Genome-Wide Association Studies

Caitlin Collins, Thibaut Jombart

MRC Centre for Outbreak Analysis and Modelling Imperial College London

Genetic data analysis using 30-10-2014

Outline

- Introduction to GWAS
- Study design
 - GWAS design
 - Issues and considerations in GWAS
- Testing for association
 - Univariate methods
 - Multivariate methods
 - Penalized regression methods
 - Factorial methods

Genomics & GWAS

 \bullet \bullet \bullet

The genomics revolution

Sequencing technology

- o 1977 Sanger
- o 1995 1st bacterial genomes
 - < 10,000 bases per day per machine
- o 2003 1st human genome
 - > 10,000,000,000,000
 bases per day per machine

GWAS publications

2005 – 1st GWAS

 Age-related macular degeneration

 2014 – 1,991 publications

 14,342 associations

A few GWAS discoveries...

So what is GWAS?

- Genome Wide Association Study

 Looking for SNPs...
 associated with a phenotype.
- Purpose:
 - o **Explain**
 - Understanding
 - Mechanisms
 - Therapeutics
 - Predict

Genomics & GWAS

- Intervention
- Prevention
- Understanding not required

Association

Definition

 Any relationship between two measured quantities that renders them statistically dependent.

Heritability

 The proportion of variance explained by genetics

 $\circ \mathsf{P} = \mathsf{G} + \mathsf{E} + \mathsf{G}^*\mathsf{E}$

Heritability > 0

The case of the missing heritability

Genomics & GWAS

6

Why?

- Environment, Gene-Environment interactions
- Complex traits, small effects, rare variants
- Gene expression levels
- GWAS methodology?

The case of the missing heritability

Study Design

GWAS design

Case-Control

- Well-defined "case"
- o Known heritability

Variations

- Quantitative phenotypic data
 - Eg. Height, biomarker concentrations
- Explicit models
 - Eg. Dominant or recessive

Issues & Considerations

- Data quality
 0 1% rule
- Controlling for confounding

 Sex, age, health profile
 Correlation with other variables
- Population stratification*
- Linkage disequilibrium^{*}

Population stratification

Definition

- "Population stratification" = population structure
- Systematic difference in allele frequencies btw. subpopulations...
 - ... possibly due to different ancestry

Problem

- Violates assumed population homogeneity, independent observations
 - → Confounding, spurious associations
- Case population more likely to be related than Control population
 - → Over-estimation of significance of associations

Population stratification II

- Solutions
 O Visualise
 - Phylogenetics
 - PCA

Correct

- Genomic Control
- Regression on Principal Components of PCA

Linkage disequilibrium (LD)

Definition

- Alleles at separate loci are NOT independent of each other
- Problem?
 - Too much LD is a problem
 - → noise >> signal
 - Some (predictable) LD can be beneficial
 - → enables use of "marker" SNPs

Testing for Association

 \bullet \bullet \bullet

Methods for association testing

- Standard GWAS

 Univariate methods
- Incorporating interactions

 Multivariate methods
 - Penalized regression methods (LASSO)
 - Factorial methods (DAPC-based FS)

Univariate methods

- Approach
 - Individual test statistics
 - Correction for multiple testing

- Variations
 - o **Testing**
 - Fisher's exact test, Cochran-Armitage trend test, Chisquared test, ANOVA
 - Gold Standard—Fischer's exact test
 - Correcting
 - Bonferroni
 - Gold Standard—FDR

Testing for Association

Univariate – Strengths & weaknesses

Strengths

- Straightforward
- Computationally fast
- Conservative
- Easy to interpret

Weaknesses

- Multivariate system, univariate framework
- Effect size of individual SNPs may be too small
- Marginal effects of individual SNPs ≠ combined effects

Interactions

- White White Epistasis White White o "Deviation from li general linear n × AAbb aaBB $Y_i = w_0 + w_1 A_i + w_2 B_{i} + w_3 A_i B_{i}$ Purple F1 • With p predictors, t All AaBb Purple • $\binom{p}{k} = \frac{p^k}{k!}$ k-way interactions
 - p = 10,000,000 → 5 x 10¹¹
 That's **500 BILLION** possible pair-wise interactions!

Need some way to limit the number of pairwise interactions considered...

• Testing for Association

•

Multivariate methods

Penalized Regression

LASSO penalized regression Ridge regression

Bayesian Approaches

Bayesian partitioning Bayesian Logistic Bayesian Epistasis Regression with Association Mapping Stochastic Search Variable Selection

Factorial Methods

Sparse-PCA Supervised-PCA DAPC-based FS (snpzip) Odds-ratiobased MDR

Neural Networks Genetic programming optimized neural networks **Logic Trees** Logic feature selection Monte Carlo Logic regression Logic Regression Modified Logic **Regression-Gene Expression Programming** Genetic Programming for Set association Association Studies approach **Non-parametric Methods** Random forests Restricted partitioning method Combinatorial partitioning method

Multivariate methods (ii)

Penalized regression methods
 LASSO penalized regression

 Factorial methods
 DAPC-based feature selection

•23

Penalized regression methods

Approach

- Regression models multivariate association
- Shrinkage estimation → feature selection

Variations

- o LASSO, Ridge, Elastic net, Logic regression
 - Gold Standard—LASSO penalized regression

LASSO penalized regression

o Generalized linear model ("glm")

Penalization L1 norm

•

 $\circ \text{ Coefficients } \rightarrow 0$

• Feature selection!

Testing for Association

LASSO – Strengths & weaknesses

Strengths

- Stability
- Interpretability
- Likely to accurately select the most influential predictors
 - Sparsity

Weaknesses

- Multicollinearity
- Not designed for high-p
- Computationally intensive
- Calibration of penalty parameters

 User-defined → variability
- Sparsity
- NO p-values!

Factorial methods

Approach

- Place all variables (SNPs) in a multivariate space
- Identify discriminant axis → best separation
- Select variables with the highest contributions to that axis

Variations

- Supervised-PCA, Sparse-PCA, DA, DAPC-based FS
- Our focus—DAPC with feature selection (snpzip)

DAPC-based feature selection

DAPC-based feature selection

Where should we draw the line?

 $\circ \rightarrow$ Hierarchical clustering

Hierarchical clustering (FS)

\$FS\$`Number of selected vs. unselected alleles`
[1] 1 4

\$FS\$`List of selected alleles`
[1] 1

(Hooray!

\$FS\$`Names of selected alleles`
[1] "a"

\$FS\$`Contributions of selected alleles to discriminant^{*}axis
1
0.39

DAPC – Strengths & weaknesses

Strengths

- More likely to catch all relevant SNPs (signal)
- Computationally quick
- Good exploratory tool

Weaknesses

- Sensitive to n.pca
- N.snps.selected varies
- No "p-value"
- Redundancy > sparsity
- Redundancy > sparsity

Conclusions

- Study design
 - GWAS design
 - Issues and considerations in GWAS
- Testing for association
 - Univariate methods
 - Multivariate methods
 - Penalized regression methods
 - Factorial methods

Thanks for listening!

• • •

Questions?

• • •