Multivariate analysis of genetic data — exploring group diversity —

Thibaut Jombart

MRC Centre for Outbreak Analysis and Modelling Imperial College London

> Genetic data analysis with PR∼Statistics, Glasgow 05-08-2015

Outline

Introduction

Identifying groups

Hierarchical clustering K-means

Exploring group diversity

Aggregating data Optimizing group differences Discriminant Analysis of Principal Components

Outline

Introduction

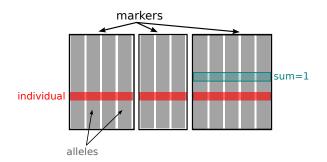
Identifying groups

Hierarchical clustering K-means

Exploring group diversity

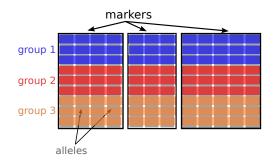
Aggregating data Optimizing group differences Discriminant Analysis of Principal Components

Genetic data: introducing group data



- How to identify groups?
- How to explore group diversity?

Genetic data: introducing group data



- How to identify groups?
- How to explore group diversity?

Outline

Introduction

Identifying groups
Hierarchical clustering
K-means

Exploring group diversity

Aggregating data
Optimizing group differences
Discriminant Analysis of Principal Components

Hierarchical clustering: a variety of algorithms

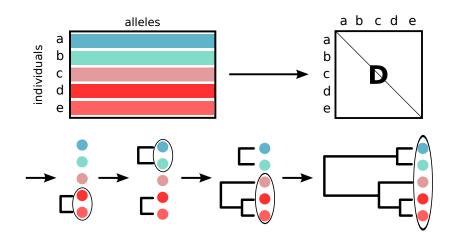
- single linkage
- complete linkage
- UPGMA
- Ward
- •

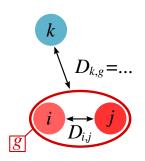
- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update D
- 4. return to 2) until no new group can be made

- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update D
- 4. return to 2) until no new group can be made

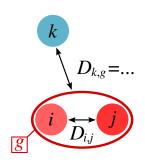
- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update \mathbf{D}
- 4. return to 2) until no new group can be made

- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update D
- 4. return to 2) until no new group can be made

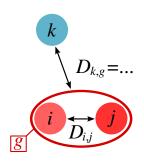




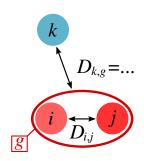
- single linkage: $D_{k,q} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$



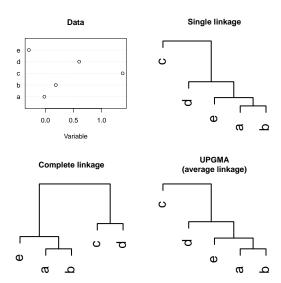
- single linkage: $D_{k,q} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$



- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$



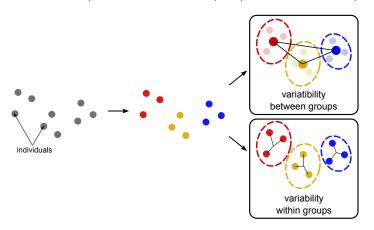
- single linkage: $D_{k,q} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,q} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$



K-means underlying model

ANOVA model:

total var. = (var. between groups) + (var. within groups)



K-means rationale

Find groups which minimize within group var. (equally: maximize between group var.).

In other words:

Identify a partition $\mathcal{G} = \{g_1, \dots, g_k\}$ solving:

$$\arg\min_{\mathcal{G} = \{g_1, \dots, g_k\}} \sum_k \sum_{i \in g_k} \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2$$

with:

- $\mathbf{x}_i \in \mathbb{R}^p$: vector of allele frequencies of individual i
- $\mu_k \in \mathbb{R}^p$: vector of means allele frequencies of group k

K-means rationale

Find groups which minimize within group var. (equally: maximize between group var.).

In other words:

Identify a partition $\mathcal{G} = \{g_1, \dots, g_k\}$ solving:

$$\arg \min_{\mathcal{G} = \{g_1, ..., g_k\}} \sum_{k} \sum_{i \in g_k} \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2$$

with:

- $\mathbf{x}_i \in \mathbb{R}^p$: vector of allele frequencies of individual i
- $\mu_k \in \mathbb{R}^p$: vector of means allele frequencies of group k

K-means rationale

Find groups which minimize within group var. (equally: maximize between group var.).

In other words:

Identify a partition $\mathcal{G} = \{g_1, \dots, g_k\}$ solving:

$$\arg\min_{\mathcal{G} = \{g_1, \dots, g_k\}} \sum_k \sum_{i \in g_k} \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2$$

with:

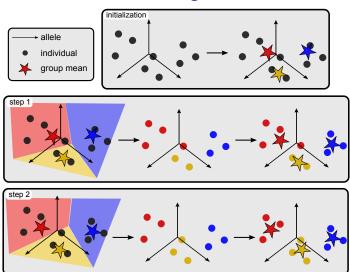
- $\mathbf{x}_i \in \mathbb{R}^p$: vector of allele frequencies of individual i
- $\mu_k \in \mathbb{R}^p$: vector of means allele frequencies of group k

- 1. select random group means $(\mu_k, k = 1, ..., K)$
- 2. assign each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

- 1. select random group means $(\mu_k, k = 1, ..., K)$
- 2. assign each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

- 1. select random group means $(\mu_k, k = 1, ..., K)$
- 2. assign each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

- 1. select random group means $(\mu_k, k = 1, ..., K)$
- 2. assign each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)



K-means: limitations and extensions

Limitations

- slower for large numbers of alleles (e.g. 100,000)
- K-means does not identify the number of clusters (K)

Extension

- run K-means after dimension reduction using PCA
- ullet try increasing values of K
- use Bayesian Information Criterion (BIC) for model selection

K-means: limitations and extensions

Limitations

- slower for large numbers of alleles (e.g. 100,000)
- K-means does not identify the number of clusters (K)

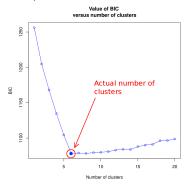
Extension

- run K-means after dimension reduction using PCA
- ullet try increasing values of K
- use Bayesian Information Criterion (BIC) for model selection

Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Simulated data: island model with 6 populations



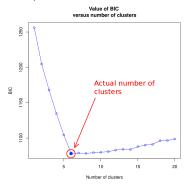
Performances:

- orders of magnitude faster (seconds vs hours/days)

Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Simulated data: island model with 6 populations



Performances:

- K-means ≥ STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

Outline

Introduction

Identifying groups
Hierarchical clustering
K-means

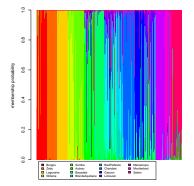
Exploring group diversity

Aggregating data Optimizing group differences Discriminant Analysis of Principal Components

Why identifying clusters is not the whole story

Example of cattle breeds diversity (30 microsatellites, 704 individuals).

Group membership probabilities:

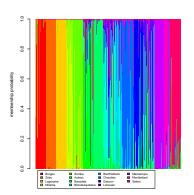


Important to assess the relationships between clusters.

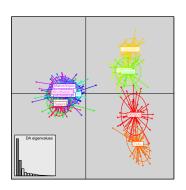
Why identifying clusters is not the whole story

Example of cattle breeds diversity (30 microsatellites, 704 individuals).

Group membership probabilities:



Multivariate analysis:

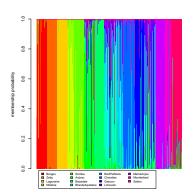


Important to assess the relationships between clusters.

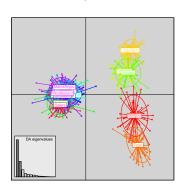
Why identifying clusters is not the whole story

Example of cattle breeds diversity (30 microsatellites, 704 individuals).

Group membership probabilities:

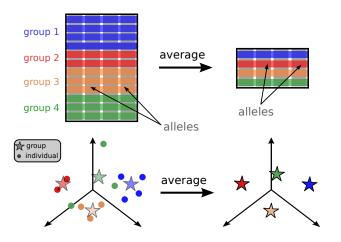


Multivariate analysis:



Important to assess the relationships between clusters.

Aggregating data by groups



 \longrightarrow multivariate analysis of group allele frequencies.

Analysing group data

Available methods:

- Principal Component Analysis (PCA) of allele frequency table
- Genetic distance between populations → Principal Coordinates Analysis (PCoA)
- Correspondance Analysis (CA) of allele counts

Criticism:

- Lose individual information
- Neglect within-group diversity
- CA: possible artefactual outliers

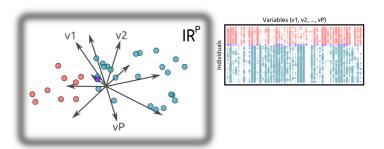
Analysing group data

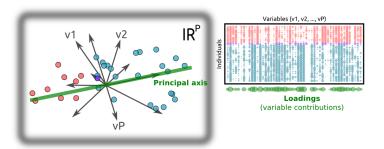
Available methods:

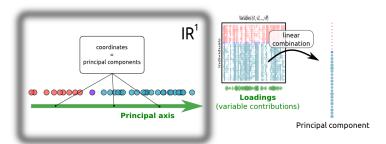
- Principal Component Analysis (PCA) of allele frequency table
- Genetic distance between populations → Principal Coordinates Analysis (PCoA)
- Correspondance Analysis (CA) of allele counts

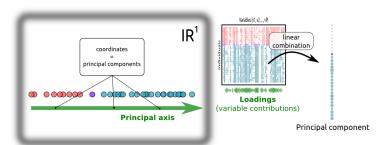
Criticism:

- Lose individual information
- Neglect within-group diversity
- CA: possible artefactual outliers

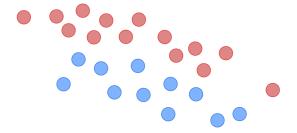






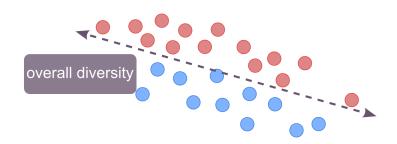


But total variance may not reflect group differences



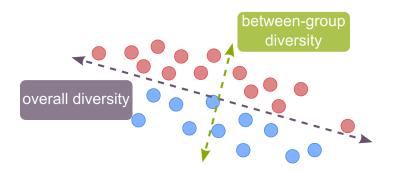
Need to optimize different criteria.

But total variance may not reflect group differences



Need to optimize different criteria.

But total variance may not reflect group differences



Need to optimize different criteria.

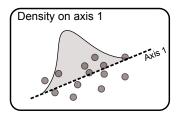
- PCA: total variance
- Between-group PCA: variance between groups
- Within-group PCA: variance within groups
- Discriminant Analysis: variance between groups / variance within groups

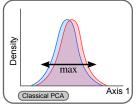
- PCA: total variance
- Between-group PCA: variance between groups
- Within-group PCA: variance within groups
- Discriminant Analysis: variance between groups / variance within groups

- PCA: total variance
- Between-group PCA: variance between groups
- Within-group PCA: variance within groups
- Discriminant Analysis: variance between groups / variance within groups

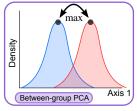
- PCA: total variance
- Between-group PCA: variance between groups
- Within-group PCA: variance within groups
- Discriminant Analysis: variance between groups / variance within groups

From PCA to DA: increasing group differentiation

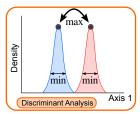




Max. total diversity



Max. diversity between groups



Max. separation of groups

Discriminant Analysis: limitations and extensions

Limitations:

- DA requires less variables (alleles) than observations (individuals)
- DA requires uncorrelated variables (no frequencies, no linkage disequilibrium)

Discriminant Analysis of Principal Components (DAPC)¹:

- data orthogonalisation/reduction using PCA before DA
- overcomes limitations of DA
- group membership probabilities, group prediction

Jombart et al. 2010, BMC Genetics

Discriminant Analysis: limitations and extensions

Limitations:

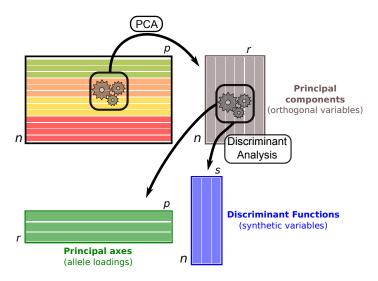
- DA requires less variables (alleles) than observations (individuals)
- DA requires uncorrelated variables (no frequencies, no linkage disequilibrium)

Discriminant Analysis of Principal Components (DAPC)¹:

- data orthogonalisation/reduction using PCA before DA
- overcomes limitations of DA
- group membership probabilities, group prediction

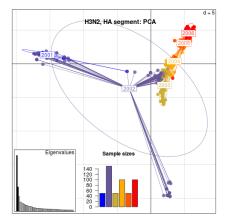
Jombart et al. 2010, BMC Genetics

Rationale of DAPC



PCA of seasonal influenza (A/H3N2) data

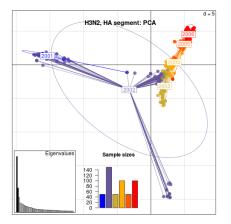
Data: seasonal influenza (A/H3N2), 500 HA segments.



Little temporal evolution, burst of diversity in 2002??

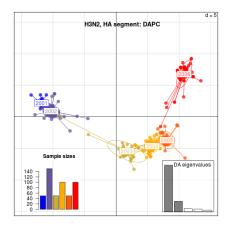
PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.



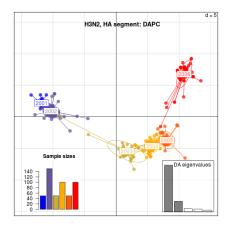
Little temporal evolution, burst of diversity in 2002??

DAPC of seasonal influenza (A/H3N2) data



Strong temporal signal, originality of 2006 isolates (new alleles).

DAPC of seasonal influenza (A/H3N2) data



Strong temporal signal, originality of 2006 isolates (new alleles).

Other features

DAPC can be used to:

- provides group assignment probabilities
- can use supplementary individuals
- can predict group membership of new data
- can be used for variable selection

Time to get your hands dirty (again)!

The pdf of the practical is online:

http://adegenet.r-forge.r-project.org/

or

 $\mathsf{Google} \to \mathsf{adegenet} \to \mathsf{documents} \to \mathsf{``Workshop\ Glasgow,\ August\ 2015''}$