A (short) introduction to phylogenetics

Thibaut Jombart

MRC Centre for Outbreak Analysis and Modelling Imperial College London

> Genetic data analysis with R PR~Statistics, Glasgow 03-08-2015

Outline

Context

Phylogenies...

Distance trees

Parsimony

Likelihood/Bayesian

Uncertainty

Pitfalls & best practices

And more...

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesiar

Uncertainty

Pitfalls & best practices

And more

Phylogenetics: from the origins...

'From the first growth of the tree, many a limb and branch has decayed and dropped off; and these fallen branches of various sizes may represent those whole orders, families, and genera which have now no living representatives, and which are known to us only in a fossil state.'

C. Darwin, Notebook, 1837.

Phylogenetics: ...to the present

Bininda-Emonds *et al.*, 2007, Nature.

- phylogenetic trees are part of the standard toolbox of genetic data analysis
- represent the evolutionary history of a set of (sampled) taxa

Context Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

And the main difference is...

Current trees look better!

(and some other minor differences)

Context Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

And the main difference is...

Current trees look better!

(and some other minor differences)

Context Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

And the main difference is...

Current trees look better!

(and some other minor differences)

About the minor differences...

- DNA sequencing revolution
- huge data banks freely available (e.g. GenBank)
- easier, cheaper, faster to obtain DNA sequences
- increasing number of full genomes available

Different ways to exploit this information.

About the minor differences...

- DNA sequencing revolution
- huge data banks freely available (e.g. GenBank)
- easier, cheaper, faster to obtain DNA sequences
- increasing number of full genomes available

Different ways to exploit this information.

Outline

Context

Phylogenies...

Distance trees

Parsimony

Likelihood/Bayesiar

Uncertainty

Pitfalls & best practices

And more

Phylogenetic trees: some useful terms

Phylogenetic tree: representation of evolutionary relationships between a set of taxa.

From alignments to phylogenies

```
...attaaacgtaggatctagg...
...attaaacgtaggatctagg...
...attcatacgtaggatcagg...
...attgtacgtaggatctttt...
...attgtacgtaggatctttt...
...attgtacgtaggatctttt...
...attgcatgtaggatctttt...
```

From alignments to phylogenies

From alignments to phylogenies

Different methods for achieving phylogenetic reconstruction.

Workflow

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Analyse the tree

- assess uncertainty
- test phylogenetic signal
- model trait evolution

12/39

ext Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

Workflow

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Analyse the tree

- assess uncertainty
- test phylogenetic signal
- model trait evolution

12/39

Workflow

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Analyse the tree

- assess uncertainty
- test phylogenetic signal
- model trait evolution

12/39

ext Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

Workflow

Prepare data

• align sequences: alignment software + manual refinement

Build the tree

- distance-based methods
- maximum parsimony
- likelihood-based methods (ML, Bayesian)

Analyse the tree

- assess uncertainty
- test phylogenetic signal
- model trait evolution

• ...

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesiar

Uncertainty

Pitfalls & best practices

And more

Approaches relying on **agglomerative clustering** algorithms (e.g. Single linkage, UPGMA, Neighbor-Joining)

Rationale

- 1. compute pairwise genetic distances D
- 2. group closest sequences
- 3. update D
- 4. go back to 2) until all sequences are grouped

Alignment

Hierarchical clustering:

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Neighbor joining:

Hierarchical clustering:

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Neighbor joining:

Hierarchical clustering:

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Neighbor joining:

Hierarchical clustering:

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Neighbor joining:

Hierarchical clustering:

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
- UPGMA: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Neighbor joining:

Distance-based phylogenetic reconstruction

Advantages

- simple
- flexible (many distances and clustering algorithms)
- fast and scalable (applicable to large datasets)

- sensitive to distance/clustering chosen
- evolutionary rates are not estimated
- no measure of uncertainty for the tree obtained

Distance-based phylogenetic reconstruction

Advantages

- simple
- flexible (many distances and clustering algorithms)
- fast and scalable (applicable to large datasets)

- sensitive to distance/clustering chosen
- evolutionary rates are not estimated
- no measure of uncertainty for the tree obtained

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesiar

Uncertainty

Pitfalls & best practices

And more

Approaches relying on finding the tree with the smallest number of character changes (substitutions)

Rationale

- 1. start from a pre-defined tree
- 2. compute initial parsimony score
- 3. permute branches and compute parsimony score
- 4. accept new tree if the parsimony score is improved
- 5. go back to 3) until convergence

ntext Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

Maximum parsimony phylogenies

Advantages

- applicable to any discontinuous characters (not just DNA)
- intuitive explanation: 'simplest' evolutionary scenario

- evolutionary rates are not estimated
- no measure of uncertainty for the tree obtained
- computer-intensive
- different types of substitutions ignored
- evolution not necessarily parsimonious
- sensitive to heterogeneous rates of evolution (*long branch attraction*)

tt Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

Maximum parsimony phylogenies

Advantages

- applicable to any discontinuous characters (not just DNA)
- intuitive explanation: 'simplest' evolutionary scenario

- evolutionary rates are not estimated
- no measure of uncertainty for the tree obtained
- computer-intensive
- different types of substitutions ignored
- evolution not necessarily parsimonious
- sensitive to heterogeneous rates of evolution (long branch attraction)

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesian

Uncertainty

Pitfalls & best practices

And more

Likelihood-based phylogenies (ML / Bayesian)

Approaches relying on a model of sequence evolution:

- ML: find tree and evolutionary rates with highest likelihood
- Bayesian: find tree and evolutionary rates to posterior probability

Rationale

- 1. start from a pre-defined tree
- 2. compute initial likelihood/posterior
- 3. permute branches, sample new parameters and compute likelihood/posterior
- accept new tree and parameters based on likelihood/posterior improvement
- 5. go back to 3) until convergence

Likelihood-based phylogenies (ML / Bayesian)

Approaches relying on a model of sequence evolution:

- ML: find tree and evolutionary rates with highest likelihood
- Bayesian: find tree and evolutionary rates to posterior probability

Rationale

- 1. start from a pre-defined tree
- 2. compute initial likelihood/posterior
- 3. permute branches, sample new parameters and compute likelihood/posterior
- accept new tree and parameters based on likelihood/posterior improvement
- 5. go back to 3) until convergence

Likelihood-based phylogenies (ML / Bayesian)

t Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

Likelihood-based phylogenies (ML / Bayesian)

Advantages

- very flexible
- consistent with a model of evolution
- statistically consistent (model comparison)
- parameter estimation
- (Bayesian) several trees → measure of uncertainty

- computer-intensive
- choice of the model of evolution
- (ML) no measure of uncertainty for the tree obtained
- (Bayesian) need to find a consensus tree

t Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more...

Likelihood-based phylogenies (ML / Bayesian)

Advantages

- very flexible
- consistent with a model of evolution
- statistically consistent (model comparison)
- parameter estimation
- (Bayesian) several trees → measure of uncertainty

- computer-intensive
- choice of the model of evolution
- (ML) no measure of uncertainty for the tree obtained
- (Bayesian) need to find a consensus tree

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesiar

Uncertainty

Pitfalls & best practices

And more

Main issue: assess the uncertainty of the tree topology / individual nodes

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)

Main issue: assess the uncertainty of the tree topology / individual nodes

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)

Main issue: assess the uncertainty of the tree topology / individual nodes

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)

Main issue: assess the uncertainty of the tree topology / individual nodes

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)

Main issue: assess the uncertainty of the tree topology / individual nodes

- ML: model selection to compare trees (whole tree)
- Bayesian methods: between-samples variability (individual nodes)
- any method: bootstrap (individual nodes)

- assess variability due to sampling the genome and conflicting signals
- relies on analysing resampled datasets

Rationale

- 1. obtain a reference tree
- 2. resample the sites with replacement
- 3. obtain a tree for the resampled dataset
- 4. go back to 2) until the desired number of bootstrapped trees is attained
- 5. compute the frequency of each bifurcation of the reference tree occuring in bootstrapped trees

- assess variability due to sampling the genome and conflicting signals
- relies on analysing resampled datasets

Rationale

- 1. obtain a reference tree
- 2. resample the sites with replacement
- 3. obtain a tree for the resampled dataset
- 4. go back to 2) until the desired number of bootstrapped trees is attained
- 5. compute the frequency of each bifurcation of the reference tree occuring in bootstrapped trees

Advantages

- standard
- simple to implement

- possibly computer-intensive
- assumes that the genome has been sampled randomly (often wrong)

Advantages

- standard
- simple to implement

- possibly computer-intensive
- assumes that the genome has been sampled randomly (often wrong)

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesiar

Uncertainty

Pitfalls & best practices

And more...

Plotting trees as rooted

Never plot an unrooted tree as rooted.

Context Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more

Plotting trees as rooted

Never plot an unrooted tree as rooted.

Interpreting distances

Interpreting distances

Interpreting distances

Context Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more

The paradox of divergent clusters

MRCA and genetic distances may give different information.

Context Phylogenies... Distance trees Parsimony Likelihood/Bayesian Uncertainty Pitfalls & best practices And more

The paradox of divergent clusters

MRCA and genetic distances may give different information.

The paradox of divergent clusters

MRCA and genetic distances may give different information.

Taking uncertainty into account

At best, the tree is an estimate of the likely evolutionary history of the taxa studied.

Taking uncertainty into account

At best, the tree is an estimate of the likely evolutionary history of the taxa studied.

Taking uncertainty into account

At best, the tree is an estimate of the likely evolutionary history of the taxa studied.

(Over, Mis)Interpreting temporal trends

"Time trees" only make sense under a near-perfect molecular clock.

(Over, Mis)Interpreting temporal trends

"Time trees" only make sense under a near-perfect molecular clock.

(Over, Mis)Interpreting temporal trends

"Time trees" only make sense under a near-perfect molecular clock.

Outline

Context

Phylogenies..

Distance trees

Parsimony

Likelihood/Bayesian

Uncertainty

Pitfalls & best practices

And more...

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

- estimate divergence time
- model trait evolution (phylogenetic comparative method)
- reconstruct ancestral states
- measure diversity
- infer past demographics/effective population size (coalescence)
- ..
- and also, other approaches than phylogenetics to analyse genetic data

Time to get your hands dirty!

The pdf of the practical is online:

http://adegenet.r-forge.r-project.org/

or

 $\mathsf{Google} \to \mathsf{adegenet} \to \mathsf{documents} \to \mathsf{``Workshop\ Glasgow,\ August\ 2015''}$