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Abstract

This practical provides an introduction to Genome-Wide Association Studies
(GWAS) in R . First, we will examine population structures within the data. Second,
we will test for associations between a genome-wide SNP panel and our phenotypic
trait of interest: antibiotic resistance. We will carry out the test of association and
perform feature selection with three separate methods: (i) The univariate Fisher’s
exact test, (ii) the multivariate penalized regression technique LASSO, and (iii) with
an extension of the multivariate factorial method DAPC. Following these initial tests
of association, we will correct for population stratification via two methods (PCA and
DAPC). We will re-run GWAS, applying all three methods of association testing and
feature selection to the “corrected” dataset, and compare the results.
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1 The data

Before we begin, we will need to (install and) load the required packages.

library(devtools)

install_github("thibautjombart/adegenet")

library(adegenet)

install.packages("glmnet", dep=TRUE)

library(glmnet)

## Loading required package: ade4

##

## /// adegenet 2.0.1 is loaded ////////////

##

## > overview: ’?adegenet’

## > tutorials/doc/questions: ’adegenetWeb()’

## > bug reports/feature resquests: adegenetIssues()

##

##

## Loading required package: Matrix

##

## Attaching package: ’Matrix’

##

## The following objects are masked from ’package:base’:

##

## crossprod, tcrossprod

##

## Loading required package: foreach

## Loaded glmnet 2.0-2

The simulated data used in this practical is saved under the name “simGWAS.Rdata”.
The dataset is in R ’s binary format (extension RData), which uses compression to store data
efficiently.

Please set your working directory to the location of the “simGWAS” file on your computer
(replace ‘‘PATH/TO/WORKING DIRECTORY’’ in the code below with the correct path for your
computer). Then, using get(load()), read the data into R . A new object, simGWAS, should
appear in your R environment:

setwd("PATH/TO/WORKING_DIRECTORY/")

simGWAS <- get(load("./simGWAS.Rdata"))

Let’s take a quick look at the format and dimensions of of simGWAS.
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class(simGWAS)

## [1] "list"

names(simGWAS)

## [1] "snps" "phen"

The object simGWAS is a list containing the two components required for any GWAS: (i)
genetic variables stored in $snps, a matrix of Single Nucleotide Polymorphism (SNPs) data,
and (ii) the phenotype of the different sampled isolates, stored in $phen.

The SNPs data has a modest size by GWAS standards:

print(object.size(simGWAS$snps), unit="Mb")

## 7.8 Mb

Note: If we were dealing with a larger SNP dataset, we might want to work with our
data in the genlight format, which can reduce RAM requirements by over 50 times! (See
adegenetTutorial("genomics") for details.)

Let’s take a look at the object contained in $snps...

class(simGWAS$snps)

## [1] "matrix"

dim(simGWAS$snps)

## [1] 95 10050

simGWAS$snps[1:10,1:8]

## L00001 L00002 L00003 L00004 L00005 L00006 L00007 L00008

## isolate-1 0 1 1 1 0 1 0 1

## isolate-2 1 1 1 1 0 1 0 0

## isolate-3 1 1 1 1 0 1 0 0

## isolate-4 1 1 0 1 0 0 1 0

## isolate-5 1 1 1 1 0 1 0 0

## isolate-6 0 1 1 1 0 1 0 0

## isolate-7 0 1 1 1 0 1 1 0

## isolate-8 1 1 0 1 0 1 0 0

## isolate-9 1 0 0 1 0 1 1 0

## isolate-10 0 1 1 1 1 1 1 1
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And we see that it contains a matrix with 95 individuals (haploid bacterial isolates) in the
rows, and 10,050 binary SNPs in the columns (alleles coded as 0/1).

For each of the 95 individuals, a phenotype is stored in the factor $phen:

class(simGWAS$phen)

## [1] "factor"

length(simGWAS$phen)

## [1] 95

simGWAS$phen

## [1] S S S S S R R S S S S R S S S S S R S R S S S R S S S R R S R R R R R

## [36] S S R R S S S R R R S S R R R R R R R R S S S R R R R R S S S R R S R

## [71] R R R S S R S R S S S S S S S S S S S S S S S R S

## Levels: R S

table(simGWAS$phen)

##

## R S

## 40 55

In this analysis, the phenotype of interest is antibiotic resistance. The “R” and “S” in the
above table stand for the two levels of this phenotype: “Resistant” and “Susceptible”.

To simplify further commands, we create the new objects snps and phen from simGWAS:

snps <- simGWAS$snps

phen <- factor(simGWAS$phen)

5



2 First assessment of the genetic diversity

Principal Component Analysis (PCA) is a very powerful tool for reducing the diversity
contained in massively multivariate data into a few synthetic variables (the principal
components — PCs). We will run PCA with the dudi.pca function from the ade4 package
(a dependency of adegenet), specifying that variables should not be scaled (scale=FALSE) to
unit variances (this is only useful when variables have inherently different scales of variation,
which is not the case here):

pca1 <- dudi.pca(snps, scale=FALSE)

PCA eigenvalues

0
5

10
15

20
25

30 How many axes are significant?

The method displays a screeplot (barplot of eigenvalues) to help the user decide how many
PCs should be retained. The general rule is to retain only the largest eigenvalues, after
which non-structured variation results in smoothly decreasing eigenvalues. How many PCs
would you retain here?

The object pca1 contains various information.
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pca1

## Duality diagramm

## class: pca dudi

## $call: dudi.pca(df = snps, scale = FALSE, scannf = FALSE, nf = 5)

##

## $nf: 5 axis-components saved

## $rank: 94

## eigen values: 32.2 30.03 28.22 25.77 23.08 ...

## vector length mode content

## 1 $cw 10050 numeric column weights

## 2 $lw 95 numeric row weights

## 3 $eig 94 numeric eigen values

##

## data.frame nrow ncol content

## 1 $tab 95 10050 modified array

## 2 $li 95 5 row coordinates

## 3 $l1 95 5 row normed scores

## 4 $co 10050 5 column coordinates

## 5 $c1 10050 5 column normed scores

## other elements: cent norm

Most importantly:

• pca1$eig contains the eigenvalues of the analysis, representing the amount of
information contained in each PC.

• pca1$li contains the principal components.

• pca1$c1 contains the principal axes (loadings of the variables).

Use head() to examine the first few elements of each of these:

head(pca1$eig)

## [1] 32.19587 30.03250 28.22215 25.76779 23.07734 21.73465

head(pca1$li)

## Axis1 Axis2 Axis3 Axis4 Axis5

## isolate-1 5.048201 -3.068272 -9.205946 -6.499608 0.7487427

## isolate-2 3.513306 -3.601273 -8.578199 -10.092913 -3.6415792

## isolate-3 3.911874 -3.951249 -8.893619 -7.501878 -2.4698956

## isolate-4 3.930861 -3.465554 -8.462628 -5.833693 -0.0363412

## isolate-5 3.755635 -2.966284 -8.378713 -8.771672 -1.7296293

## isolate-6 2.511967 -0.699552 -10.329327 -2.952949 9.8714639
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head(pca1$c1)

## CS1 CS2 CS3 CS4

## L00001 -0.004642219 1.077777e-02 -0.0013576456 -0.0110171225

## L00002 0.000926134 -1.036157e-02 -0.0026777380 -0.0089670704

## L00003 -0.005606760 -3.342560e-03 0.0023200728 -0.0011928040

## L00004 0.002716849 1.250353e-04 -0.0005926661 -0.0001794188

## L00005 -0.003184920 -4.223935e-04 0.0049759458 -0.0062691897

## L00006 -0.001926306 5.648339e-05 0.0039054812 -0.0133130370

## CS5

## L00001 -0.0048392443

## L00002 0.0154976521

## L00003 0.0004408119

## L00004 -0.0021188560

## L00005 -0.0005538742

## L00006 -0.0068934484

Because of the large number of variables, the usual biplot (function scatter) is useless
to visualize the results (try scatter(pca1) if unsure). Instead, we can represent PCs using
s.label:

s.label(pca1$li, sub="PCA - PC 1 and 2")

add.scatter.eig(pca1$eig,5,1,2, ratio=.26, posi="topleft")
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What can you say about the genetic relationships between the isolates? Are there indications
of distinct lineages of bacteria? If so, how many lineages would you count?

For a more quantitative assessment of this clustering, we derive squared Euclidean distances
between isolates (function dist) and use hierarchical clustering with complete linkage
(hclust) to define tight clusters:

D <- dist(pca1$li[,1:5])^2

clust <- hclust(D, method="complete")

We can plot the distances stored in the dist object, D, in a heatmap with the following
commands (which should look familiar from the intro-phylo practical).

temp <- as.data.frame(as.matrix(D))

temp <- t(as.matrix(D))

temp <- temp[,ncol(temp):1]

par(mar=c(1,5,5,1))

image(x=1:95, y=1:95, temp, col=rev(heat.colors(nlevels(as.factor(D)))),
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xaxt="n", yaxt="n",

xlab="",ylab="")

axis(side=2, at=1:95, lab=rev(rownames(snps)), las=2, cex.axis=.46)

axis(side=3, at=1:95, lab=rownames(snps), las=2, cex.axis=.46)

title("Genetic distances between isolates", outer=TRUE, line=-1)
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Genetic distances between isolates

## Reset those pesky margins!

par(mar=c(5.1,4.1,4.1,2.1))

Based on this distance matrix, what do you predict the topology of a complete-linkage
hierarchical clustering tree will look like?
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plot(clust,

main="Clustering (complete linkage) based on the first 5 PCs", cex=.4)
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Clustering (complete linkage) based on the first 5 PCs

hclust (*, "complete")
D

H
ei

gh
t

How many major clusters are there in the data?

Use cutree to define clusters based on the dendrogram:

pop <- factor(cutree(clust, k=5))

Taking a look at the object pop, we see that it is a factor containing 5 levels. Using table,
we can see how many individuals belong to each cluster.
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head(pop,20)

## isolate-1 isolate-2 isolate-3 isolate-4 isolate-5 isolate-6

## 1 1 1 1 1 1

## isolate-7 isolate-8 isolate-9 isolate-10 isolate-11 isolate-12

## 1 1 1 1 1 1

## isolate-13 isolate-14 isolate-15 isolate-16 isolate-17 isolate-18

## 1 1 1 2 2 2

## isolate-19 isolate-20

## 2 2

## Levels: 1 2 3 4 5

table(pop)

## pop

## 1 2 3 4 5

## 15 15 20 30 15

Having defined the subpopulation cluster to which each individual isolate belongs, we can
now use s.class to represent these groups on top of the PCs with different colours and
ellipses:

s.class(pca1$li, fac=pop, col=transp(funky(5)), cpoint=2,

sub="PCA - axes 1 and 2")

add.scatter.eig(pca1$eig,5,1,2, ratio=.24, posi="topleft")

12



 d = 5 

 PCA − axes 1 and 2 
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Do the same for PCs 3 and 4. (If you are unsure about how to change which axes are
displayed, use ?s.class to get a list of the arguments available for this function.)
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 d = 5 

 PCA − axes 3 and 4 
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Looking at the above two plots, what can you say about the contribution of each of the first
four retained PCs to our assessment of the population structure?

Let’s also take a look at PC 5:
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 d = 5 

 PCA − axes 4 and 5 
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What sort of variation does the 5th PCA axis represent? Does it contribute meaningfully to
the separation of our 5 main subpopulation clusters?
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3 Assessing the extent of population stratification

The data contained in phen indicate whether isolates are susceptible or resistant to a given
antibiotic (S/R):

head(phen,10)

## [1] S S S S S R R S S S

## Levels: R S

Above, we used s.class to visualise the main subpopulation clusters along the significant
axes of PCA. Now let’s use it to visualise our two phenotypic clusters on each of the first
5 PCs. Start by plotting the phenotypic clusters along the first two PCA axes with the
following commands, and then do the same for axes 3 and 4, then 4 and 5.

## PCA axes 1 and 2 ##

s.class(pca1$li, fac=phen, col=transp(c("royalblue","red")), cpoint=2,

sub="PCA - axes 1 and 2")

add.scatter.eig(pca1$eig,5,1,2, ratio=.24, posi="topleft")
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Looking at these plots, would you say that antibiotic resistance is correlated to the main
genetic features of these isolates?

Take a look at the following cross-tabulation of phenotypic groups and subpopulation clusters:

table(phen, pop)

## pop

## phen 1 2 3 4 5

## R 3 5 13 18 1

## S 12 10 7 12 14

What do you think? Confirm or reject your hypothesis by performing a standard Chi-square
test to check if there is an association between genetic clusters and resistance:

chisq.test(table(phen, pop), simulate=TRUE)

##
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## Pearson's Chi-squared test with simulated p-value (based on 2000

## replicates)

##

## data: table(phen, pop)

## X-squared = 19.4498, df = NA, p-value = 0.0004998

So what do you conclude?

Do you think we should correct for population stratification in our GWAS analysis? The
most common method of correcting for population stratification in GWAS is to control for
variation along the significant axes of PCA. If we adopt this approach, what complications
might we run into? (Hint: Look at the two s.class plots showing PCA axes 4 and 5.)
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4 GWAS

Before we think about correcting for population stratification, it is always a good idea to do
a naive test of association (ie. without any correction for population stratification).

We will test for association with three different methods that were introduced during the
lecture:

1. The univariate Fisher’s exact test.

2. The multivariate LASSO method.

3. The multivariate DAPC-based approach to feature selection.

4.1 Univariate method

The first method we will use to test for association in this dataset is the most standard
approach used in GWAS: the univariate Fisher’s exact test.

We can run this test with a simple one-line command:

pval <- apply(snps, 2, function(e)

fisher.test(table(factor(e, levels=c(0,1)), phen))$p.value)

Please take a moment to make sure you understand what each part of this function is doing.
What is meant by the number 2? What is the “e” doing?

Let’s take a look at the pval object we just created. What is the smallest p-value found by
the Fisher’s exact test? And how many p-values achieve “significance” at alpha=0.05?

min(pval)

# 1.002828e-27

length(which(pval < 0.05))

# 460

Are there really 460 SNPs that are significantly associated with antibiotic resistance in this
dataset? What have we forgotten to do?

Recall that because the Fisher’s exact test is a univariate approach, we are carrying out
one Fisher test for every SNP in our dataset (that’s 10,050 tests!). This means that we also
need to correct for multiple testing. We will do this with two different methods and compare
the results.
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4.1.1 Bonferroni correction

We will first try using the Bonferroni method to correct for multiple testing.

To do this, we can either divide our “significance threshold” p-value (ie. 0.05) by the
number of tests (ie. the number of SNP loci), or we can scale up our p-values with the
function p.adjust:

pval.corrected.bonf <- p.adjust(pval, method="bonferroni")

To visualise the results from this test, we can use the following commands to generate a
Manhattan Plot (the plot most commonly used to represent the results of GWAS analyses).

log.pval <- -log10(pval.corrected.bonf)

set.seed(1)

log.pval <- jitter(log.pval, amount=0.5)

plot(log.pval,

col = transp(azur(5)),

pch = 19,

cex = 1.5,

ylim=c(-0.5, 25),

main="Fisher's exact test \n(Bonferroni correction)",

xlab="SNP loci", ylab="Bonferroni-corrected -log10(p-value)")

thresh <- -log10(0.05)

abline(h=thresh, col = "red", lwd=2)
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Each point in the plot represents a p-value. Note that the colours of the points are not
meaningful: this is just a way of distinguishing neighbouring points from one another.

How many SNPs have we identified as significant by the Fisher’s exact test with Bonferroni
correction?

res <- which(pval.corrected.bonf < 0.05)

length(res)

# 53

Which loci have been selected?

res

## L00135 L00234 L00621 L01081 L01259 L01773 L01866 L02027 L02068 L02128

## 135 234 621 1081 1259 1773 1866 2027 2068 2128

## L02669 L02680 L03411 L03740 L03833 L03856 L03871 L04118 L04774 L04831

## 2669 2680 3411 3740 3833 3856 3871 4118 4774 4831
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## L04945 L04995 L05301 L05535 L05551 L05552 L05553 L05554 L05555 L05757

## 4945 4995 5301 5535 5551 5552 5553 5554 5555 5757

## L06008 L06318 L06477 L06535 L06637 L06695 L06929 L07201 L07246 L07325

## 6008 6318 6477 6535 6637 6695 6929 7201 7246 7325

## L07727 L07799 L07836 L07898 L07954 L08218 L08287 L08717 L09025 L09125

## 7727 7799 7836 7898 7954 8218 8287 8717 9025 9125

## L09376 L09489 L09952

## 9376 9489 9952

Because the loci in this dataset are named simply ‘‘L0001’’ to ‘‘L10050’’, we may
not want or need to keep the loci names when storing our result. It will be a little easier to
examine the list of results if we just store the indices of the SNPs selected and set the names
of the selected loci to NULL.

names(res) <- NULL

Before moving on to the next test, create a list in which to store the results from the various
association tests we will perform as we continue through the practical. Store the result from
this analysis in that list and give it an appropriate name so that later in the practical we can
compare it the the results from other association tests.

sigSNPs <- list()

sigSNPs[[1]] <- list(res)

names(sigSNPs)[[1]] <- "univariate"

names(sigSNPs$univariate)[[1]] <- "bonferroni"

4.1.2 FDR correction

Let’s try to make a prediction before we get the results obtained by the False Discovery
Rate correction for multiple testing: Do you think that we will identify more or fewer SNPs
as significant associations with the FDR correction, as compared with the number we just
found with the Bonferroni correction?

The False Discovery Rate correction for multiple testing is less straightforward than the
Bonferroni correction, but it can just as easily be carried out with the function p.adjust:

pval.corrected.fdr <- p.adjust(pval, method="fdr")

Now, working with pval.corrected.fdr instead of pval.corrected.bonf, make another
Manhattan plot to visualise the results from the Fisher’s exact test with FDR correction.
For ease of comparison, you may want to use the command par(mfrow=c(1,2)) to allow for
the generation of side-by-side Manhattan plots (type ?par for more info).
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What can you say about the two methods of correcting for multiple testing by comparing
these two plots?

How many associated SNPs do we find by using the FDR method of correcting for multiple
testing?
Which loci are these?

res <- which(pval.corrected.fdr < 0.05)

names(res) <- NULL

length(res)

# 59
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res

## [1] 135 234 621 1081 1259 1465 1773 1866 2027 2068 2128 2669 2680 2739

## [15] 3411 3496 3740 3813 3833 3856 3871 4118 4774 4831 4945 4995 5301 5535

## [29] 5551 5552 5553 5554 5555 5757 6008 6318 6477 6535 6637 6695 6897 6929

## [43] 7201 7246 7325 7727 7799 7836 7898 7954 8218 8287 8717 9025 9125 9376

## [57] 9489 9734 9952

Remember to store your result in sigSNPs...

sigSNPs$univariate[[2]] <- res

names(sigSNPs$univariate)[[2]] <- "fdr"
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4.2 Multivariate methods

4.2.1 LASSO

To test for association with the LASSO penalized regression method, we use the function
cv.glmnet from package glmnet.

set.seed(1)

LASSO <- cv.glmnet(snps, phen,

family="binomial",

lambda.min.ratio=0.01, alpha=1)

(What does the “cv” in the cv.glmnet function stand for? And why have we set
lambda.min.ratio to 0.01?)

The LASSO method generates coefficients for each variable, though the majority of these
will have been shrunk to zero in the penalization step. We extract these coefficients from the
model generated by cv.glmnet with the function coef.

beta <- as.vector(t(coef(LASSO, s="lambda.min")))

We retrieve the results of the implicit feature selection performed by LASSO by identifying
the variables that have non-zero coefficients.

res <- which(beta[-1] !=0)

coefs.LASSO <- beta[-1][res]

names(coefs.LASSO) <- colnames(snps)[res]

Taking a look at the SNPs selected, we see...

length(res)

# 4

res

# 5551 5552 5553 5555

Quite the disagreement with the results from the univariate approach.

A standard visualisation tool for the LASSO method is a plot of the fraction of deviance
explained versus the values of the coefficients retained in the LASSO regression model.

First, get the fitted glmnet object from within the results of the LASSO cross-validation:
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fit <- LASSO$glmnet.fit

Then, plot the deviance explained by the coefficients retained. (Note: So we don’t waste too
much time fidgeting around with this ugly plot, I’ve included the standard plotting command,
as well as some modified code below this that will allow us to see the labels more clearly for
this example.)

## standard code:

plot(fit, xvar = "dev", label = TRUE)

## improved code for this example:

y.pos <- coefs.LASSO-c(0.2, 0.25, 0.5, 0.75)

plot(fit, xvar = "dev", label = FALSE)

text(x=1.01, y=y.pos,

labels=names(coefs.LASSO), col="black", pos=2, cex=0.6)

grid()

title("Fraction of deviance explained by LASSO coefficients", line=3)
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Still not a very pretty plot, but it does tell us something...

Let’s take a closer look at the coefficients assigned to each of the SNPs selected by LASSO.

coefs.LASSO

# 5551 5552 5553 5555

# -1.051829e+01 -9.203177e-15 -3.122506e-14 -3.911350e-14

Note that (the absolute value of) the coefficient for the first SNP is substantially larger
than the coefficients for the other 4 SNPs selected by LASSO, which are very near zero.
What is your interpretation of these coefficients? What do they tell you about the relative
importance of each of the SNPs selected?
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Before we move on, remember to store these results in our sigSNPs list:

sigSNPs[[2]] <- list(res)

names(sigSNPs)[[2]] <- "multivariate"

names(sigSNPs$multivariate)[[1]] <- "lasso"
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4.2.2 DAPC-based feature selection

We begin the DAPC approach to feature selection by running cross-validation to help us
select the number of PCs of PCA to retain that will maximize our ability to discriminate
between our two phenotypic groups.

set.seed(1)

xval1 <- xvalDapc(snps, phen,

n.pca=c(c(1,3), seq(10, 80, 10)),

n.rep=20) # may take a moment...

Based on the plot generated by xvalDapc, do you trust that cross-validation has been
successful in selecting a model that is useful in assigning individuals to the correct
phenotypic group?

Let’s take a look at the object xval1 containing the results of cross-validation:

xval1[2:6]
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## $`Median and Confidence Interval for Random Chance`

## 2.5% 50% 97.5%

## 0.3954545 0.5034091 0.6011080

##

## $`Mean Successful Assignment by Number of PCs of PCA`

## 1 3 10 20 30 40 50 60 70

## 0.60000 0.75500 1.00000 0.98750 0.99375 0.96625 0.90750 0.86250 0.89375

## 80

## 0.75750

##

## $`Number of PCs Achieving Highest Mean Success`

## [1] "10"

##

## $`Root Mean Squared Error by Number of PCs of PCA`

## 1 3 10 20 30 40

## 0.43178409 0.27122408 0.00000000 0.03952847 0.02795085 0.07137051

## 50 60 70 80

## 0.13896942 0.19921722 0.14328730 0.27214426

##

## $`Number of PCs Achieving Lowest MSE`

## [1] "10"

How many PCs of PCA should you retain in your DAPC? For this analysis (and for all
Case-Control GWAS analyses), how many DA axes do you need?

The last element of the output of xvalDapc is a dapc object generated with the optimal
number of PCs, as indicated by RMSE. Store this in an object called dapc1.

dapc1 <- xval1[[7]]

We can now use the function snpzip to perform feature selection and visualise our results.
(NOTE: Due to recent updates in the hclust package, the name being used to indicate
Ward’s minimum variance method has been changed. R will complain about this, but it is
safe to ignore these warnings.)

result <- snpzip(snps, dapc1,

method="ward", xval.plot = FALSE,

plot = TRUE, loading.plot = TRUE)

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"
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par(ask=FALSE) # allow plots to display without hitting ENTER

Looking at the plot entitled “DAPC”, would you say that the DAPC approach has been
successful in distinguishing our two phenotypic groups along the principal axis?

We can check this explicitly by looking at the summary of dapc1:

summary(dapc1)

## $n.dim

## [1] 1

##

## $n.pop

## [1] 2

##

## $assign.prop

## [1] 1

##
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## $assign.per.pop

## R S

## 1 1

##

## $prior.grp.size

##

## R S

## 40 55

##

## $post.grp.size

##

## R S

## 40 55

Thinking back to the s.class plot we made earlier to visualise the phenotypic groups
in PCA space, would you say that DAPC has been more or less effective in separating these
two phenotypic groups than PCA (along any axis or axes)? Why?

Let’s take a look at the output of snpzip:

result

## $`Number of PCs of PCA retained`

## [1] 10

##

## $FS

## $FS$`Number of selected vs. unselected alleles`

## [1] 52 9998

##

## $FS$`List of selected alleles`

## [1] 135 234 621 1081 1259 1773 1866 2027 2068 2128 2669 2680 3411 3740

## [15] 3833 3856 3871 4118 4831 4945 4995 5301 5535 5551 5552 5553 5554 5555

## [29] 5757 6008 6318 6477 6535 6637 6695 6929 7201 7246 7325 7727 7799 7836

## [43] 7898 7954 8218 8287 8717 9025 9125 9376 9489 9952

##

## $FS$`Names of selected alleles`

## [1] "L00135" "L00234" "L00621" "L01081" "L01259" "L01773" "L01866"

## [8] "L02027" "L02068" "L02128" "L02669" "L02680" "L03411" "L03740"

## [15] "L03833" "L03856" "L03871" "L04118" "L04831" "L04945" "L04995"

## [22] "L05301" "L05535" "L05551" "L05552" "L05553" "L05554" "L05555"

## [29] "L05757" "L06008" "L06318" "L06477" "L06535" "L06637" "L06695"

## [36] "L06929" "L07201" "L07246" "L07325" "L07727" "L07799" "L07836"

## [43] "L07898" "L07954" "L08218" "L08287" "L08717" "L09025" "L09125"

## [50] "L09376" "L09489" "L09952"

##
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## $FS$`Contributions of selected alleles to discriminant axis`

## L00135 L00234 L00621 L01081 L01259 L01773

## 0.002702390 0.004019747 0.003417851 0.004192544 0.003141309 0.002436959

## L01866 L02027 L02068 L02128 L02669 L02680

## 0.004571981 0.003665454 0.003918528 0.002509789 0.002749745 0.004066029

## L03411 L03740 L03833 L03856 L03871 L04118

## 0.002587192 0.002845342 0.003103492 0.003164939 0.004406861 0.002543660

## L04831 L04945 L04995 L05301 L05535 L05551

## 0.003089871 0.004641114 0.002428758 0.002944800 0.003482731 0.008163206

## L05552 L05553 L05554 L05555 L05757 L06008

## 0.008163206 0.008163206 0.008163206 0.008163206 0.003394389 0.005109407

## L06318 L06477 L06535 L06637 L06695 L06929

## 0.002347548 0.004162878 0.002432528 0.003507859 0.002155828 0.003406501

## L07201 L07246 L07325 L07727 L07799 L07836

## 0.003411794 0.003233062 0.002468220 0.002526155 0.003885590 0.002189902

## L07898 L07954 L08218 L08287 L08717 L09025

## 0.003910026 0.003337914 0.004672914 0.004309669 0.005317029 0.002757332

## L09125 L09376 L09489 L09952

## 0.003287357 0.003026235 0.004666147 0.003214336

With a result much more similar to that given by the Fisher’s exact test than to the result
given by LASSO, we have selected 52 SNPs as significant associations with DAPC-based
feature selection using Ward’s minimum variance clustering method.

Isolate the element of result containing the selected alleles and store it in our sigSNPs list:

res <- result$FS[[2]]

sigSNPs$multivariate[[2]] <- res

names(sigSNPs$multivariate)[[2]] <- "dapc"
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5 Correcting for population stratification with PCA

The objective in correcting for population stratification is to remove the between-group
variation separating individuals in the study sample into subpopulation clusters.

Recall that earlier we identified 5 major clusters:

table(pop)

## pop

## 1 2 3 4 5

## 15 15 20 30 15

PCA is the most common method of correcting for population stratification in GWAS.

As we have already run a PCA to visualise the population structure in our first assessment
of genetic diversity, we have already generated the object pca1 that we will use to correct
our SNPs matrix for population stratification. We do this by regressing along the significant
axes of PCA. In our case, this means we will regress along the first 5 PCs of PCA.

snps.corrected <- apply(snps, 2, function(e)

residuals(lm(e~pca1$li[,1]+pca1$li[,2]+pca1$li[,3]+

pca1$li[,4]+pca1$li[,5]))) # may take a minute

Let’s inspect our corrected SNPs matrix:

dim(snps.corrected)

# 95 10050

range(snps.corrected)

# -1.137694 1.279894

snps.corrected[1:10,1:5]

## L00001 L00002 L00003 L00004 L00005

## isolate-1 -0.6239781 0.079521595 0.2102712 -0.007840968 -0.05342640

## isolate-2 0.3146597 0.112919596 0.1960766 -0.013179369 -0.08662247

## isolate-3 0.3540695 0.113155207 0.2004474 -0.011457889 -0.06703873

## isolate-4 0.3796632 0.096568617 -0.7979056 -0.005859113 -0.05711164

## isolate-5 0.3330204 0.102025735 0.1998281 -0.009510705 -0.07723301

## isolate-6 -0.5795854 -0.006171606 0.2067841 0.018053703 -0.02762617

## isolate-7 -0.6244806 -0.004455539 0.2144205 0.012633779 -0.05202696

## isolate-8 0.3477955 0.089695614 -0.8056878 -0.007025073 -0.08183554

## isolate-9 0.3507693 -0.884919196 -0.7995953 -0.007655277 -0.07580913

## isolate-10 -0.6442575 0.096202834 0.2011892 -0.006948981 0.93407128
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What kind of variable does our corrected SNPs matrix contain?

To visually assess whether our correction for population stratification has been successful,
we can run a second PCA analysis, this time with the corrected SNPs matrix:

pca2 <- dudi.pca(snps.corrected, scale=FALSE, scannf=FALSE, nf=5)

First, we can take a look at the eigenvalues for pca2.

barplot(pca2$eig, main="PCA eigenvalues")

What do you notice about these eigenvalues? What can you infer from this?
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Using s.class and par(mfrow), let’s examine the structure among our subpopulation
clusters and phenotypic groups along the first 5 axes of PCA:

Have we removed the variation separating our subpopulation clusters? In other words, do
you think we have been successful in correcting for population stratification?

What has happened to the variation separating our phenotypic groups? What impact do you
predict this will have on the results of GWAS analyses run after correcting for population
stratification via PCA (in this example)?

Let’s go and see for ourselves...
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6 GWAS after correcting with PCA

6.1 Univariate method

While both multivariate methods for association testing and feature selection will be directly
repeatable in application to our newly corrected SNPs matrix, our univariate approach is no
longer valid!

Why do you think the Fisher’s exact test is no longer appropriate here?

Instead of Fisher’s exact test we will use an alternative univariate approach that consists of
two stages. First, we generate a simple linear model between each column of our corrected
SNPs matrix and our phenotypic trait. Second, we run an analysis of variance (ANOVA) on
each model generated, specifying a Chi-squared test of association. From this,we can retrieve
a p-value for the significance of association between each corrected SNP and the resistance
phenotype.

pval2 <- numeric(0)

for(i in 1:ncol(snps.corrected)){
foo <- suppressWarnings(glm(phen ~ snps.corrected[,i], family="binomial"))

ANOVA <- anova(foo, test="Chisq")

pval2[i] <- ANOVA$"Pr(>Chi)"[2]

} # end for loop

Take a look at the smallest p-value, and determine the number of p-values that are significant
at alpha=0.05.

min(pval2, na.rm=TRUE)

## [1] 0.0005274102

# 0.0005274102

length(which(pval2 < 0.05))

## [1] 5

# 5

Oh dear. We are barely achieving significance at any locus and we have not yet corrected for
multiple testing!
We will now correct for multiple testing as we did in our initial univariate analysis, using
the Bonferroni correction and False Discovery Rate. We can use the same code to do this as
before we corrected for population stratification.
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6.1.1 Bonferroni correction

pval.corrected.bonf <- p.adjust(pval2, method="bonferroni")

res <- which(pval.corrected.bonf < 0.05)

As you may have predicted, there are no SNPs above the threshold of significance:

length(res)

## [1] 0

Nevertheless, we will make a new list in which to store the results of our association tests
performed after correcting for population stratification with PCA...

sigSNPs.PCA <- list()

And store our results with the same organisation as before:

sigSNPs.PCA[[1]] <- list(res)

names(sigSNPs.PCA)[[1]] <- "univariate"

names(sigSNPs.PCA$univariate)[[1]] <- "bonferroni"

6.1.2 FDR correction

We do the same for the FDR correction.

pval.corrected.fdr <- p.adjust(pval2, method="fdr")

res <- which(pval.corrected.fdr < 0.05)

Even this less conservative approach does not have the power to detect any associations
in our dataset following the correction for population stratification via regression along the
significant axes of PCA.

length(res)

## [1] 0

Again, while we have found no significant SNPs, we still store the result in sigSNPs.PCA.

sigSNPs.PCA$univariate[[2]] <- res

names(sigSNPs.PCA$univariate)[[2]] <- "fdr"
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Despite our lack of findings with either method of correcting for multiple testing, we can
still compare the the Bonferroni- and FDR-corrected p-values with side-by-side Manhattan
plots:
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Looking at these plots, it is clear that, regardless of the method of correcting for multiple
testing, we had no chance of finding any significant associations with the univariate approach.

6.2 Multivariate methods

6.2.1 LASSO

The LASSO method can be performed using the exact same code as before (replacing snps

with snps.corrected).

fit <- LASSO$glmnet.fit

Then, plot the deviance explained by the shrinking coefficients.

## standard code:

plot(fit, xvar = "dev", label = TRUE)
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grid()

title("Deviance explained by LASSO coefficients (PCA corrected)", line=3)
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So, does LASSO do any better than the Fisher’s exact test?

res <- which(beta[-1] !=0)

length(res)

# 0

Sadly no. While we can see in the plot that SNP 5551 (which was selected as significant by
LASSO before we corrected for population stratification) has the largest non-zero coefficient
(absolute value), LASSO is unable to build a model that explains a sufficient fraction of the
deviance in the phenotype to deem any of its coefficients “significant”.

sigSNPs.PCA[[2]] <- list(res)

names(sigSNPs.PCA)[[2]] <- "multivariate"

names(sigSNPs.PCA$multivariate) <- "lasso"
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6.2.2 DAPC-based feature selection

Now we try with the remaining method: the DAPC-based feature selection approach.

Previously, we ran cross-validation and then set the first two arguments of the function
snpzip to be snps and dapc1. Instead of providing snpzip with a SNPs matrix and a dapc

object, we could have simply input a SNPs matrix and a group factor (in the case of GWAS,
this would be phen). If snpzip sees that its second argument is a group factor rather than
a dapc object, it will automatically perform cross-validation with xvalDapc.

result <- snpzip(snps.corrected, phen,

xval.plot=TRUE, plot=TRUE, loading.plot=TRUE,

method="ward")
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Notice that while we get no separation between groups, and our cross-validation consistently
fails to accurately predict the group membership of individuals, snpzip will still find some
SNPs (in this case, loads of SNPs!), because there will always be a set of more-significantly-
contributing variables to the discriminant axis.

In fact, in this case, because there is not an obvious set of SNPs whose loadings stand out
strongly from the rest, the “ward” clustering method selects an extremely large number of
SNPs.

res <- result$FS[[2]]

length(res)

# 519

sigSNPs.PCA[[2]][[2]] <- res

names(sigSNPs.PCA$multivariate)[[2]] <- "dapc"

Given our abysmal lack of success with GWAS after correcting for population stratification
using the significant axes of PCA, we can try again with a different approach.
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7 Correcting for population stratification with DAPC

Using DAPC to correct for population stratification in GWAS, while less common in the
GWAS literature, is strongly supported by the following theoretical justification: Because,
in correcting for population stratification, we are trying to remove the population structure
that is separating the individuals in our study sample into subpopulation groups, it makes
sense to use a method that focuses only on the between-group structure.

While we have already identified that there are 5 major subpopulation clusters represented
in our dataset (visible in both PCA space and in our complete-linkage hierarchical clustering
phylogenetic tree), we can also check with find.clusters to see if 5 is an appropriate value
of “k” for this dataset.
Note: Because the data we are working with in this practical is a simulated dataset, variance
accumulates nearly linearly with increasing numbers of PCs. This means that there is no
obvious number of PCs at which a plateau in the cumulative variance is reached. When
asked below to choose the number of PCs to retain, 20 will be enough to see an elbow in the
BIC plot to follow.

grp <- find.clusters(snps, max.n.clust=20)

## Choose the number of PCs to retain:

## 20

## Choose the number of clusters:

## 5
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Once again, we have support for 5 clusters.

We can use table.value to check that the suggested 5 groups correspond to the pops we
originally identified with cutree.
Looks good!

Using our pop clusters as the group factor in DAPC, we can generate a new DAPC object after
performing cross-validation to optimise the discrimination between these subpopulations:

xval.pop <- xvalDapc(snps, pop)

xval.pop[2:6]

## $`Median and Confidence Interval for Random Chance`

## 2.5% 50% 97.5%

## 0.1215833 0.2000000 0.2817500

##

## $`Mean Successful Assignment by Number of PCs of PCA`

## 10 20 30 40 50 60 70

## 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9755556
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## 80

## 0.7244444

##

## $`Number of PCs Achieving Highest Mean Success`

## [1] "10"

##

## $`Root Mean Squared Error by Number of PCs of PCA`

## 10 20 30 40 50 60

## 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

## 70 80

## 0.06554614 0.34221501

##

## $`Number of PCs Achieving Lowest MSE`

## [1] "10"

dapc.pop <- xval.pop[[7]]

As we did when correcting with PCA, we regress along the axes of DAPC. When correcting
with the DAPC approach, we do not need to determine how many axes are “significant”: we
will always correct with (k - 1) axes.

snps.corrected <- apply(snps, 2, function(e)

residuals(lm(e~dapc.pop$ind.coord[,1]+

dapc.pop$ind.coord[,2]+

dapc.pop$ind.coord[,3]+

dapc.pop$ind.coord[,4])))

As we did in the previous section, we use PCA as a visual diagnostic tool to check whether
our correction for population stratification has been successful.

pca2 <- dudi.pca(snps.corrected, scale=FALSE)

Looking at the eigenvalues for pca2, what do you notice?

barplot(pca2$eig, main="PCA eigenvalues")
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As you did before, use s.class to examine the population and phenotypic structure present
along the first 5 axes of PCA.
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8 GWAS after correcting with DAPC

Repeat the code above to get the results of GWAS with each method, and store these in
another list, sigSNPs.DAPC.

8.1 Univariate method

pval2 <- numeric(0)

for(i in 1:ncol(snps.corrected)){
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foo <- suppressWarnings(glm(phen ~ snps.corrected[,i], family="binomial"))

ANOVA <- anova(foo, test="Chisq")

pval2[i] <- ANOVA$"Pr(>Chi)"[2]

} # end for loop

Take a look at the smallest p-value, and determine the number of p-values that are significant
at alpha=0.05.

min(pval2, na.rm=TRUE)

## [1] 5.773208e-30

# 5.773208e-30

length(which(pval2 < 0.05))

## [1] 405

# 405

Excellent, we have nearly retained all of the power from our initial GWAS!
Now correct for multiple testing using the Bonferroni correction and False Discovery Rate.
(We can use the same code to do this as before.)

8.1.1 Bonferroni correction

pval.corrected.bonf <- p.adjust(pval2, method="bonferroni")

res <- which(pval.corrected.bonf < 0.05)

We now have 43 SNPs above the significance threshold!

length(res)

# 43

We’ll make a new list for this round of association tests:

sigSNPs.DAPC <- list()

And store our results with the same organisation as before:

sigSNPs.DAPC[[1]] <- list(res)

names(sigSNPs.DAPC)[[1]] <- "univariate"

names(sigSNPs.DAPC$univariate)[[1]] <- "bonferroni"
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8.1.2 FDR correction

We do the same for the FDR correction.

pval.corrected.fdr <- p.adjust(pval2, method="fdr")

res <- which(pval.corrected.fdr < 0.05)

Naturally, we have found more significant SNPs with the FDR correction.

length(res)

# 59

We store the result in sigSNPs.DAPC.

sigSNPs.DAPC$univariate[[2]] <- res

names(sigSNPs.DAPC$univariate)[[2]] <- "fdr"

And we compare the the Bonferroni- and FDR-corrected p-values with side-by-side
Manhattan plots once again:
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8.2 Multivariate methods

8.2.1 LASSO

The LASSO method can be performed using the exact same code as before (replacing snps

with snps.corrected).
We pull out the fit from our glmnet object.

fit <- LASSO$glmnet.fit

And plot the deviance explained by the shrinking coefficients.

## standard code:

plot(fit, xvar = "dev", label = TRUE)

grid()

title("Deviance explained by LASSO coefficients (DAPC corrected)", line=3)
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Good! This time we have reached the necessary predictive power to expect some non-zero
coefficients.
So, how many did LASSO find this time?
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res <- which(beta[-1] !=0)

length(res)

# 5

Aha! This time we find one more SNP than we did before correcting for populaiton
stratification.

sigSNPs.DAPC[[2]] <- list(res)

names(sigSNPs.DAPC)[[2]] <- "multivariate"

names(sigSNPs.DAPC$multivariate) <- "lasso"

8.2.2 DAPC-based feature selection

We can again run the DAPC-based feature selection approach with snpzip.

result <- snpzip(snps.corrected, phen,

xval.plot=TRUE, plot=TRUE, loading.plot=TRUE,

method="ward")

par(ask=FALSE)
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Excellent. We are able to identify a number of PCs that enables us to predict the group
membership of individuals with a reasonable degree of accuracy.
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We also see a reasonbly good separation of the two phenotypic groups along the
discriminant axis, though there is still some overlap in the middle.
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And our loadingplot seems much more reasonable this time around.
Once again, we pull out the SNPs selected from the output of snpzip.

res <- result$FS[[2]]

And we see that we have selected 53 significant SNPs.

length(res)

# 53

Finally, we store these in our list sigSNPs.DAPC

sigSNPs.DAPC[[2]][[2]] <- res

names(sigSNPs.DAPC$multivariate)[[2]] <- "dapc"
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8.3 Answers!

We are just about finished here!
In a real GWAS study, in fact, you would be finished at this point. And, if the results
you had found with different methods did not agree, then you would be left scratching your
head (or, if you were feeling productive, heading for the lab). In the real world, beyond
making informed inferences based on your set(s) of results, the only way to know whether
the candidate SNPs you identified are truly associated with the phenotype in question is to
confirm the association with traditional “bottom-up” laboratory experiments.
Lucky for you, this is not “real life”, per se. Instead, I, the God of All Simulations for this
practical, happen to have the answers.
To get the numbers of the columns in the SNP matrix which contain the truly associated
SNPs, all you need to do is the following:

set.seed(1) # important!

snps.assoc <- sample(c(1:10050), 50)

snps.assoc <- sort(c(c(snps.assoc), c(5551:5555)))

snps.assoc

## [1] 135 234 621 1081 1259 1773 1866 2027 2068 2128 2669 2680 3411 3740

## [15] 3813 3833 3856 3871 4118 4774 4831 4945 4995 5301 5535 5551 5552 5553

## [29] 5554 5555 5757 6008 6318 6477 6535 6637 6695 6897 6929 7201 7246 7325

## [43] 7727 7799 7836 7898 7954 8218 8287 8717 9025 9125 9376 9489 9952

Et voila! There were, after all, 55 truly associated SNPs to be found.
Armed with this information, you may now make a more informed comparison of the
performance of the GWAS methods we tried out. Sensitivity and specificity are two of
the most commonly used metrics of evaluation for classification tests.
To calculate sensitivity and specificity for each classification test, you will need to measure
the following four quantities for the test in question:

• TP: The number of True Positives (ie. n.times you called a SNP “significant” when it
truly was).

• TN: The number of True Negatives (ie. n.times you ruled out an insignificant SNP
when you truly should have).

• FP: The number of False Positives (ie. n.times you called a SNP “significant” when it,
in fact, was not).

• FN: The number of False Negatives (ie. n.times you ruled out a SNP and called it
“insignificant” when it was, in fact, significant).

The following formulas can then be used to compute the performance metrics:
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sensitivity <- (TP / (TP + FN))

specificity <- (TN / (TN + FP))

Now compare! What do you think makes the different trade-offs between sensitivity and
specificity advantageous or disadvantageous? Are there any circumstances in which these
trade-offs might cause you to favour certain methods over others?
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