Genome-Wide Association Studies

Caitlin Collins] Thibaut Jombart

Imperial College London
MRC Centre for Outbreak Analysis and Modelling

October 30, 2014

Abstract

This practical provides an introduction to Genome-Wide Association Studies in R .
First, we will examine population structures within the data. Second, we will test for
associations between a genome-wide SNP panel and our phenotypic trait of interest:
antibiotic resistance. We will carry out this test and perform feature selection with
three separate methods: The univariate Fisher’s exact test, the multivariate penalized
regression technique LASSO, and with an extension of the multivariate factorial method
DAPC . Then, we will use PCA to correct for population stratification. Finally, we will
re-run the three methods of association testing and feature selection on the ”corrected”
dataset and compare the results.

*caitlin.collins12@imperial.ac.uk

Contents

1

The data
1.1 First assessment of the genetic diversity
1.2 Identifying SNPs linked to antibiotic resistance

Association testing and feature selection

2.1 Univariate method

2.2 Multivariate methods
2.2.1 LASSO . . . e
2.2.2 DAPC-based feature selection
2.2.3 A little more on DAPC-based feature selection

Correcting for population stratification

Association testing and feature selection after correcting

4.1 Univariate method

4.2 Multivariate methodso
4.2.1 LASSO e
4.2.2 DAPC-based feature selection

4.3 Interpreting the significance of the SNPs selected

The adegenet Server

15
15
17
17
19
23

28

32
32
36
36
38
40

44

1 The data

library(adegenet)

install.packages("glmnet", dep=TRUE)

library(glmnet)

ade4

Loading required package:
##

adegenet 1.4-1 is loaded
##

##

- to start, type ’?adegenet’
- to browse adegenet website, type ’adegenetWeb ()’
- to post questions/comments: adegenet-forum@lists.r-forge.r-project.org

##
##

Loading required package:
Loaded glmnet 1.9-5

Matrixz

The simulated data used in this practical are available online from the following address:
http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData. The dataset
is in R’s binary format (extension RData), which uses compression to store data efficiently
(the raw csv file would be more than 4MB). R objects can be loaded into R using load. The
instruction url is required to load the data directly from the internet; as data are loaded, a
new object simGWAS appears in the R environment:

load(url("http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData"))

1s(pattern="sim")

[1] "simGWAS"
class(simGWAS)

[1] "list"

names (simGWAS)

[1] "snps" "phen"
class(simGWAS$snps)
[1] "matrix"

class(simGWAS$phen)

http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData

[1] "character"
dim(simGWAS$snps)
[1] 95 10000

simGWAS$snps[1:10,1:20]

#it 123456789 10 11 12 13 14 15 16 17 18 19 20
isolate-1 000101100 1 1 0 1 1 O O 1 O O 1
isolate-2 000101100 1 1 1 1 1 0 1 1 O O 1
isolate-3 000111110 1 0 1 1 1 1 1 1 1 0 1
isolate-4 011101100 0 1 1 0 1 1 1 0 1 0 O
isolate-5 100101010 1 1 0 1 1 0 1 1 1 0 O
isolate-6 110111100 1 1 1 1 1 0 1 1 1 0 1
isolate-7 110110010 1 0 1 1 1 0 O 1 1 1 O
isolate-8 01 0001000 1 0 1 1 0 O 1 1 1 1 O
isolate-9 010111000 1 1 1 1 0 1 1 1 1 1 1
isolate-10 000111100 1 1 0 O 0 O O 1 1 0 1

print(object.size(simGWAS$snps), unit="Mb")
7.8 Mb

length (simGWAS$phen)

[1] 95

simGWAS$phen

[1] "R" "S" "S" "S" USM UM Mg MSM MgM wgM wgM VRN MM UM MR MSM S
3 (IR ORGS0 R B G0 00 O O e T B0 G0 WED . Dm0 D e
[35] "s" "s" "R" "S" US" UR" "R" "R" "S" "S" "S" URM UM US vgv wgv g
[52] "S" "S" "S" VR" UR' 'S US" MSM MgM MgM nwgM ngH ngn ngn wgn wgn g
[69] "s" "R" "R" "R" "S" "S" "R" "S" "R" "R" "R" "R" "S" "S" "S" "S" "S"
[86] "s" "S" "S" "S" U"S" 'R" "S" "S" "R" '"R"

table (simGWAS$phen)

#it
#* R S
24 71

The object simGWAS is a list with two components: $snps is a matrix of Single Nucleotide
Polymorphism (SNPs) data, and $phen is the phenotype of the different sampled isolates.In
this analysis, the individuals are isolates of bacteria, and the phenotype of interest is antibiotic

resistance. The 'R’ and ’S’ in the above table stand for the two levels of this phenotype:
"Resistant’ and "Susceptible’.

The SNPs data has a modest size by GWAS standards: only 95 isolates (in row) and 10000
SNPs (alleles coded as 0/1). Note that here, all SNPs are binary, so that only one allele needs
to be stored. Consequently, we do not need to use the genind class to store the data (this
would be a waste of RAM - not a problem here, but definitely a concern for larger datasets).
To simplify further commands, we create the new objects snps and phen from simGWAS:

snps <- simGWAS$snps
phen <- factor (simGWAS$phen)

1.1 First assessment of the genetic diversity

Principal Component Analysis (PCA) is a very powerful tool for reducing the diversity
contained in massively multivariate data into a few synthetic variables (the principal
components — PCs). There are several versions of PCA implemented in R. Here, we
use dudi.pca from the adej package, specifying that variables should not be scaled
(scale=FALSE) to unit variances (this is only useful when variables have inherently different
scales of variation, which is not the case here):

pcal <- dudi.pca(snps, scale=FALSE)

PCA eigenvalues

30

25

20

15

10

The method displays a screeplot (barplot of eigenvalues) to help the user decide how
many PCs should be retained. The general rule is to retain only the largest eigenvalues, after
which non-structured variation results in smoothly decreasing eigenvalues. How many PCs
would you retain here?

pcal

Duality diagramm

class: pca dudi

$call: dudi.pca(df = snps, scale = FALSE, scannf = FALSE, nf = 4)
##

$nf: 4 axis-components saved

$rank: 94

eigen values: 31.76 28.77 28.13 25.72 21.68 ...
vector length mode content

1 $cw 10000 numeric column weights

2 $lw 95 numeric row weights

3 $eig 94 numeric eigen values

##

H## data.frame nrow mncol content

1 $tab 95 10000 modified array

2 $1i 95 4 row coordinates

3 $11 95 4 row normed scores

4 $co 10000 4 column coordinates
5 $ci 10000 4 column normed scores
other elements: cent norm

The object pcal contains various information. Most importantly:

e pcal$eig: contains the eigenvalues of the analysis, representing the amount of
information contained in each PC.

e pcal$li: contains the principal components.

e pcal$cl: contains the principal axes (loadings of the variables).

head(pcal$eig)

[1] 31.75594 28.77240 28.12875 25.72180 21.68303 21.36911

head(pcal$li)

#i# Axisi Axis?2 Axis3 Axiséd

isolate-1 3.606420 -2.132999 9.622764 -6.301912

isolate-2 1.912918 -1.656548 8.734490 -10.006055

isolate-3 2.316603 -2.564638 9.324818 -7.445660

isolate-4 2.490536 -2.484711 8.819193 -6.029816

isolate-5 2.448958 -1.489571 8.576321 -8.775661

isolate-6 2.938701 -2.693103 10.876804 -3.797021
head(pcal$cl)

#it Cs1 CsS2 €S3 Cs4
X1 1.004273e-02 0.004291539 -0.003509719 -0.0092503284
X2 -5.145732e-03 -0.003539221 -0.001470553 0.0075073374
X3 -3.349998e-05 -0.003362894 0.003797944 0.0013048886
X4 -1.017829e-03 0.002489303 -0.002323418 -0.0007847613
X5 7.047362e-03 0.007801922 -0.003475240 0.0057483659
X6 -1.011989e-02 0.013435213 0.021812199 -0.0321210072

Because of the large number of variables, the usual biplot (function scatter) is useless to
visualize the results (try scatter(pcal) if unsure). We represent only PCs using s.label:

s.label(pcal$li, sub="PCA - PC 1 and 2")
add.scatter.eig(pcal$eig,4,1,2, ratio=.3, posi="topleft")

Eigenvalues d=5

| isolate-47
[isolate-50f413H]
150 slat—49 e—40]

isolate-42]

i te—-63
isolate-79

isolate—76[isolate-78]
Tis isdisolate—80 74 b5

9 isolate-73 |2}
{isolate-77

[{isolate=29q blate—24 1
Tlisolate-30 jafate-23]
E UTa 2 l.jm
[=2iso isolate—28

lisolate—14

[isolate—89 1]

isolate—90

‘ isate—.

| isole—95

PCA - PC land 2

What can you say about the genetic relationships between the isolates? Are there indications
of distinct lineages of bacteria? If so, how many lineages would you count?

For a more quantitative assessment of this clustering, we derive squared Euclidean distances
between isolates (function dist) and use hierarchical clustering with complete linkage
(hclust) to define tight clusters:

D <- dist(pcal$lil[,1:4])"2
clust <- hclust(D, method="complete")

We can plot the distances stored in the dist object D in a heatmap with the follwing
commands.

temp <- as.data.frame(as.matrix(D))
temp <- t(as.matrix(D))
temp <- temp[,ncol(temp):1]

par (mar=c(1,5,5,1))
image(x=1:95, y=1:95, temp, col=rev(heat.colors(nlevels(as.factor(D)))),
xaxt="n", yaxt="n",
Xlab=" " ,ylab=" II)
axis(side=2, at=1:95, lab=rev(rownames(snps)), las=2, cex.axis=.46)
axis(side=3, at=1:95, lab=rownames(snps), las=2, cex.axis=.46)

iH
A
Ll |
C Y |
3T

par(mar=c(5.1,4.1,4.1,2.1))

Based on this distance matrix, what do you predict the topology of a complete-linkage
hierarchical clustering tree will look like?

plot(clust, main="Clustering (complete linkage) based on the first 4 PCs", cex=.4)

Clustering (complete linkage) based on the first 4 PCs

600
|

500
|

Height
300 400
| |

200
|

100
|

D
hclust (*, "complete")

How many clusters are there in the data? How does it compare to what you would
have assessed based on the first two PCs of PCA? Bonus question: considering that the
original data are profile of binary SNPs, what does the ’height’ represent in this dendrogram?

You can define clusters as before based on the dendrogram clust, using cutree:

pop <- factor(cutree(clust, k=5))
head (pop, 20)

isolate-1 isolate-2 isolate-3 isolate-4 1isolate-5 isolate-6

#t 1 1 1 1 1 1
isolate-7 isolate-8 isolate-9 isolate-10 isolate-11 isolate-12
#t 1 1 1 1 1 1
isolate-13 isolate-14 isolate-15 isolate-16 isolate-17 isolate-18
1 1 1 2 2 2
isolate-19 isolate-20

#t 2 2

Levels: 1 2 34 5

10

Now, we can represent these groups on top of the PCs using s.class (clusters are
indicated by different colors and ellipses):

s.class(pcal$li, fac=pop, col=transp(funky(5)), cpoint=2,
sub="PCA - axes 1 and 2")

add.scatter.eig(pcal$eig,4,1,2, ratio=.26, posi="topleft")

Eigenvalues d=5

%)

PCA - axes 1 and 2
We do the same for PCs 3 and 4:

s.class(pcal$li, xax=3, yax=4, fac=pop, col=transp(funky(5)),
cpoint=2, sub="PCA - axes 3 and 4")

add.scatter.eig(pcal$eig,4,1,2, ratio=.26, posi="topleft")

11

Eigenvalues d=5

PCA - axes 3 and 4

Are the clusters compatible with the results of the PCA? What is the meaning of the 3rd
axis of the PCA? How many dimensions are needed to differentiate the 5 groups?

1.2 Identifying SNPs linked to antibiotic resistance

The data contained in phen indicate whether isolates are susceptible or resistant to a given
antibiotic (S/R):

head (phen, 10)

[1] RS SSSSSSSS
Levels: R S

Our purpose in GWASis to attempt to identify the variables associated with the variation
between specific phenotypic groups of interest (in our case, the SNPs that most contribute to
the difference between the resistant and the susceptible bacteria). Let’s first see if the axes
of variation generated by PCA are able to discriminate between our two phenotypic groups.

As we have done with genetic clusters previously, we can represent these two groups on
the PCs to assess whether antibiotic resistance correlates to some components of the genetic
diversity.

12

s.class(pcal$li, fac=phen, col=transp(c("royalblue","red")), cpoint=2,
sub="PCA - axes 1 and 2")

add.scatter.eig(pcal$eig,4,1,2, ratio=.24, posi="topleft")

Eigenvalues d=5

PCA - axes 1 and 2

s.class(pcal$li, xax=3, yax=4, fac=phen, col=transp(c("royalblue","red")),
cpoint=2, sub="PCA - axes 3 and 4")

add.scatter.eig(pcal$eig,4,1,2, ratio=.24, posi="topleft")

13

Eigenvalues d=5

e _

o < N)
éag/ g ® ©
®®® | | N ®®®

o © e

PCA - axes 3 and 4

This visual assessment can be completed by a standard Chi-square test to check if there is
an association between genetic clusters and resistance:

table(phen, pop)

pop

phen 1 2 3 4 5
R 3 1 710 3
S 12 14 13 20 12

chisq.test(table(phen, pop), simulate=TRUE)

##

Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

##

data: table(phen, pop)

X-squared = 5.2267, df = NA, p-value = 0.2694

14

What do you conclude? Is antibiotic resistance correlated to the main genetic features of
these isolates?

2 Association testing and feature selection

2.1 Univariate method

pval <- apply(snps, 2, function(e)
fisher.test(table(factor(e, levels=c(0,1)), phen))$p.value)

min(pval)

[1] 5.108221e-23
length(which(pval < 0.05))
[1] 331

As we are carrying out one univariate test for every SNP in our dataset, we must now
correct for multiple testing.

pval.corrected <- p.adjust(pval, method="fdr")
min(pval.corrected)

[1] 1.021644e-19

We can now use these corrected p-values as our univariate selection criteria for feature
selection.

snps.selected.univariate <- which(pval.corrected < 0.05)
n.snps.selected.univariate <- length(snps.selected.univariate)

n.snps.selected.univariate
[1] 5
snps.selected.univariate

7197 7199 7202 7206 7207
7197 7199 7202 7206 7207

We can now visualise the results of this analysis with a Manhattan Plot, which is the
type of plot most commonly used to represent the results of GWAS analyses.

15

log.pval <- -loglO(pval.corrected)
set.seed (1)
log.pval <- jitter(log.pval, amount=0.2)

plot(log.pval,
col = c("red", "royalblue"),
pch = 19,
cex = 1.5,
main="Manhattan plot: Fisher's exact test with FDR",
xlab="SNPs", ylab="Corrected -loglO(p-value)")

Manhattan plot: Fisher's exact test with FDR

0 _|
—
©
=
©
T
=
o
% 2
o
|
e)
Q
(&)
o
5]
O
LO —]
[
SIS G @@ @@l @@=
T T T T T T
0 2000 4000 6000 8000 10000
SNPs

For the purposes of comparison, let’s also generate a Manhattan Plot with our original
uncorrected p-values, this time representing our results with the Bonferroni correction for
multiple testing.

log.pval <- -loglO(pval)

set.seed (1)
log.pval <- jitter(log.pval, amount=0.2)

16

plot(log.pval,
col = c("red", "royalblue"),
pch = 19,
cex = 1.5,
main="Manhattan plot: Fisher's exact test with Bonferroni correction",
x1lab="SNP loci", ylab="Uncorrected -loglO(p-value)",
cex.main=1)

bonferroni <- -10g10(0.05 / ncol(snps))
abline(h=bonferroni, col = "red")

Manhattan plot: Fisher's exact test with Bonferroni correction

o _|
N
—~
(]
= o _|
]
T
o
N
o
—
[®)]
S
|
o
3 9
s
(8]
[0
=
(o]
(8]
c
D
LD_
o_

0 2000 4000 6000 8000 10000

SNP loci

2.2 Multivariate methods
2.2.1 LASSO

To test for association with the LASSO penalized regression method, we use the function
cv.glmnet from package glmnet. This will allow us to generate a vector of coefficients for
each variable, the majority of which will be shrunk to zero in LASSO’s penalization step.

17

LASSO <- cv.glmnet(snps, phen, family="binomial", lambda.min.ratio=0.01, alpha=1)
beta <- as.vector(t(coef(LASSO, s="lambda.min")))

What does the ’cv’ in the cv.glmnet function stand for? And why have we set
lambda.min.ratio to 0.017

We can now carry out feature selection. Recall that in LASSO penalized regression, the
tuning parameter lambda specifies the extent of the penalty on the L1 norm, and hence it
also determines the shrinkage of the coefficients for each variable towards zero. In feature
selection by the LASSO method, the variables selected are those with non-zero coefficients
when lambda is at its optimal minimum.

selected <- which(beta[-1] !=0)
n.snps.selected.LASSO <- as.integer(length(selected))
snps.selected.LASSO <- as.vector(selected)

n.snps.selected.LASSO

[1] 5

snps.selected.LASSO

[1] 7197 7199 7202 7206 7207

LASSO has selected the same 5 SNPs as the univariate Fisher’s exact test.
Let’s take a closer look at the coefficients assigned to each of the SNPs selected by LASSO.

coefs.LASSO <- betal[-1] [snps.selected.LASSO]
names (coefs.LASS0) <- as.character(snps.selected.LASSO)
coefs.LASSO

#it 7197 7199 7202 7206 7207
—-1.086688e+01 -6.194127e-14 -3.355152e-14 -1.290443e-15 -1.032355e-14

Note that the coefficient for the first SNP is substantially larger than the coefficients for the
other 4 SNPs selected by LASSO, which are very near zero.

We may be able to better examine the differences between these coefficients by plotting them
with a simple barplot.

myCol <- funky(1)
barplot (abs(coefs.LASSO),
col=c(transp(myCol[1], 0.66)),
x1lab="SNPs selected",
ylab="Abs.val. of penalized regression coefficient",
main="LASS0: variable contributions")

18

LASSO: variable contributions

10

Abs.val. of penalized regression coefficient

7197 7199 7202 7206 7207

SNPs selected

What is your interpretation of these coefficients? What do they tell you about the relative
importance of each of the SNPs selected?

2.2.2 DAPC-based feature selection

We begin the DAPC approach to feature selection by running cross-validation to help us
select the number of PCs of PCA to retain that will maximize our ability to discriminate
between our two phenotypic groups.

set.seed (1)
xval <- xvalDapc(snps, phen)

KernSmooth 2.23 loaded
Copyright M. P. Wand 1997-2009

19

DAPC Cross—Validation

Proportion of successful outcome prediction

T T T T T T T T
10 20 30 40 50 60 70 80

Number of PCA axes retained

NULL

Based on the plot generated by xvalDapc, considering that the horizontal lines are the mean
(solid line) and 95% Confidence interval (dashed lines) for random chance, do you trust that
cross-validation has been successful in selecting a model that is useful in assigning individuals
to the correct phenotypic group?

Let’s take a look at the object xval containing the results of cross-validation:

xval[2:6]

$ Median and Confidence Interval for Random Chance"

##t 2.5% 50% 97 .5%

0.4146127 0.4982394 0.6097418

##

$ Mean Successful Assignment by Number of PCs of PCA"

#it 10 20 30 40 50 60 70

0.7130952 0.7357143 0.7190476 0.6738095 0.5488095 0.6190476 0.5035714
80

20

0.5428571

##

$ Number of PCs Achieving Highest Mean Success”

[1] "20"

##

$ Root Mean Squared Error by Number of PCs of PCA"

#i# 10 20 30 40 50 60 70

0.3428695 0.3198373 0.3216930 0.3649154 0.4868596 0.4400255 0.5455058
#it 80
0.5034743

##
$ Number of PCs Achieving Lowest MSE"
[1] "20"

Does this help you answer the previous question?
Based on the results of cross-validation, how many PCs of PCA should you retain in your
DAPC? For the purpose of this analysis (hint: and for all Case-Control GWAS analyses),
how many DA axes should you retain? Why?
Create a DAPC object called dapc1 by running a DAPC with the n.pca and n.da you wish
to retain:

We can now use the function snpzip to perform feature selection and visualise our results.

set.seed(1)

result <- snpzip(snps, dapcl,
method="single", xval.plot = FALSE,
plot = TRUE, loading.plot = TRUE)

21

Density

0.4

0.3

0.2

0.1

0.0

DAPC

|
n o

PCA eigenvalues

Al

Discriminant function 1

22

Loading plot

0.005
|

7208

Loadings
0.003 0.004
|

0.002
|

0.001
|

0.000
|

Variables

par (ask=FALSE)

snps.selected.dapc <- result$FS[[2]]
n.snps.selected.dapc <- length(snps.selected.dapc)

n.snps.selected.dapc

[1] 5

snps.selected.dapc

[1] 7197 7199 7202 7206 7207

Again, we have managed to select the same 5 SNPs!

2.2.3 A little more on DAPC-based feature selection

As an aside, you may have noticed that the snps selected are so closely clustered together
both in the alignment and on the y-axis (according to their similar loadings) that we may

23

want to re-generate the loadingplot separately to modify the placement of the labels. We
can do this as so:

min.var.selected <- abs(dapcl$var.contr[snps.selected.dapc]
[(which.min(dapcli$var.contr[snps.selected.dapc]))])-0.000001
set.seed(41)
1.plot <- loadingplot(dapcl$var.contr[,1],
threshold=c(min.var.selected), lab.jitter=7.5)

Loading plot

0.005
|

7136

7206
7207
7202

0.004

0.003
|

Loadings

0.002
|

0.001
|

0.000
|

Variables

Not perfect, but much better!
Let’s also examine what would have resulted from DAPC-based feature selection if:
1) We had only retained the first 5 PCs of PCA:

resultb <- snpzip(snps, dapc(snps, phen, n.da=1, n.pca=5),
method="single", xval.plot = FALSE,
plot = TRUE, loading.plot = TRUE)

24

Density

0.4

0.3

0.2

0.1

0.0

DAPC

|
n o

Discriminant function 1

25

PCA eigenvalues

Loading plot

0.0025
|

4252

0.0020
|

0.0015
|

Loadings

0.0010
|

0.0005
|

0.0000
|

Variables
2) We had selected a different hierarchical clustering method for performing feature selection:
result.ward <- suppressWarnings(snpzip(snps, dapcl,
method="ward", xval.plot = FALSE,

plot = TRUE, loading.plot = TRUE))

The "ward" method has been renamed to "ward.D"; note nmew "ward.D2"

26

Density

0.4

0.3

0.2

0.1

0.0

DAPC

|
n o

PCA eigenvalues

Al

Discriminant function 1

27

Loading plot

0.005
|

7208

0.004

0.003
|

Loadings

269

0.002
|

0.001
|

0.000

Variables

3 Correcting for population stratification

As we have already run a PCA to visualise the population structure in our first assessment of
genetic diversity, we have already generated the object pcal that we will use to correct our
SNPs matrix for population stratification. We do this by regressing along the axes of PCA
required to visually diagnose the presence of our population clusters. In our case, this means
we will regress along the first 4 PCs of PCA, which were needed to separate the 5 groups we
identified.

snps.corrected <- apply(snps, 2, function(e)
residuals(lm(e~pcal$li[,1]+pcal$li[,2]+pcal$li[,3]+pcal$lil,4])))

Let’s take a look at our corrected SNPs matrix.

dim(snps.corrected)

[1] 95 10000

28

snps.corrected[1:10,1:10]

#it 1 2 3 4 5
isolate-1 -0.2094808 -0.3485827 -0.06695461 0.1316558 -0.3917387
isolate-2 -0.2319002 -0.3291088 -0.05720198 0.1237753 -0.3653154
isolate-3 -0.2063008 -0.3485991 -0.06582533 0.1298276 0.6262579
isolate-4 -0.1970682 0.6412060 0.93452210 0.1297420 -0.3854874
isolate-5 0.7728263 -0.3352291 -0.05762730 0.1245033 -0.3780183
isolate-6 0.8272011 0.6290381 -0.07689193 0.1372498 0.6072959
isolate-7 0.7646633 0.6636476 -0.06132759 0.1296980 0.5936000
isolate-8 -0.2236320 0.6578480 -0.05729049 -0.8754255 -0.3735933
isolate-9 -0.2256344 0.6540961 -0.05196910 0.1214080 0.6049000
isolate-10 -0.2111378 -0.3465306 -0.06255007 0.1277205 0.6185463
#i# 6 7 8 9 10

isolate-1 0.084415426 0.4540041 -0.4679964 -0.03934675 0.09755296
isolate-2 -0.038729468 0.4386883 -0.4309456 -0.01333862 0.09546631
isolate-3 0.046922304 0.4385147 0.5420833 -0.03620780 0.10738401
isolate-4 0.104115777 0.4475439 -0.4692778 -0.04520639 -0.88562099
isolate-5 0.007423331 -0.5511860 0.5586868 -0.01996659 0.09629192
isolate-6 0.138289522 0.4436872 -0.4987127 -0.06728938 0.10651813
isolate-7 -0.901639560 -0.5256087 0.5435540 -0.02454683 0.08954542
isolate-8 0.046535326 -0.5538419 -0.4391931 -0.02178992 0.11585796
isolate-9 0.095098715 -0.5328484 -0.4456315 -0.02360528 0.11303332
isolate-10 0.049522790 0.4470624 -0.4568193 -0.03345280 0.10245325

range (snps.corrected)
[1] -1.076927 1.082378

What kind of variable does our corrected SNPs matrix contain?

We can now run a second PCA analysis with the corrected SNPs matrix to visually assess
whether our correction for population stratification has been successful:
pca2 <- dudi.pca(snps.corrected, scale=FALSE, scannf=FALSE, nf=4)

First we can take a look at the eigenvalues for pca2.

barplot(pca2$eig, main="PCA eigenvalues")

29

PCA eigenvalues

20

15

10

What do you notice about these eigenvalues? What can you infer from this?
Next, we can visualise our original population substructure in this new PCA space.

s.class(pca2$li, fac=pop, col=transp(funky(5)), cpoint=2,

sub="PCA: PCs 1 and 2")
add.scatter.eig(pca2$eig,4,1,2, ratio=.21, posi="topleft")

30

Eigenvalues d=5

@

PCA: PCs 1and 2

Our population clusters are no longer separated along axes 1 and 2!
What about axes 3 and 47

s.class(pca2$li, xax=1, yax=3, fac=pop, col=transp(funky(5)), cpoint=2,
sub="PCA: PCs 1 and 3")
add.scatter.eig(pca2$eig,4,1,2, ratio=.21, posi="topleft")

31

Eigenvalues d=5

PCA: PCs 1and 3

It seems our correction for population stratification has successfully eliminated the
potential confounding population structure!

4 Association testing and feature selection after
correcting

We can now re-run the three methods to test for associations between our corrected SNPs
and the antibiotic resistance phenotype.

4.1 Univariate method

While both multivariate methods for association testing and feature selection will be directly
repeatable in application to our newly corrected SNPs matrix, our univariate approach is no
longer valid!

Why do you think Fisher’s exact test is no longer appropriate here?

Instead of Fisher’s exact test we will use an alternative univariate approach that consists of
two stages. First, we generate a simple linear model between each column of our corrected
SNPs matrix and our phenotypic trait. Second, we run an analysis of variance (ANOVA) on

32

each model generated, specifying a Chi-squared test of association. From this,we can retrieve
a p-value for the significance of association between each corrected SNP and the resistance
phenotype.

pval2 <- numeric(0)

for(i in 1:ncol(snps.corrected)){

foo <- suppressWarnings(glm(phen ~ snps.corrected[,i], family="binomial"))
ANOVA <- anova(foo, test="Chisq")

pval2[i] <- ANOVA$"Pr(>Chi)"[2]

}
min(pval2, na.rm=TRUE)
[1] 3.657423e-25

We can then correct for multiple testing as we did in our initial univariate analysis, using
the False Discovery Rate.

pval.corrected2 <- p.adjust(pval2, method="fdr")
snps.selected.univariate2 <- which(pval.corrected2 < 0.05)
n.snps.selected.univariate2 <- length(snps.selected.univariate2)

n.snps.selected.univariate?2
[1] 5
snps.selected.univariate?2

[1] 7197 7199 7202 7206 7207

Once again, we have selected the same 5 SNPs as the set of genetic variables associated with
the resistance phenotypel!

However, a comparison of the FDR-corrected p-values from before and after the correction
for population stratification will reveal that the p-values after correction are more significant
than those from before.

pval.corrected[snps.selected.univariate]

#it 7197 7199 7202 7206 7207
1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19

pval.corrected2[snps.selected.univariate?2]

[1] 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22

33

pval.combined <- rbind(pval.corrected[snps.selected.univariate],
pval.corrected2[snps.selected.univariate2])

rownames (pval.combined) <- c("Before", "After")

pval.combined

#it 7197 7199 7202 7206 7207
Before 1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19
After 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22

What can you infer from this difference between the p-values?
Finally, we can generate the Manhattan Plots, as before:

log.pval <- -loglO(pval.corrected)
set.seed(1)
log.pval <- jitter(log.pval, amount=0.2)

plot(log.pval,
col = c("red", "royalblue"),
pch = 19,
cex = 1.5,
main="Manhattan plot: Fisher's exact test with FDR",
xlab="SNPs", ylab="Corrected -loglO(p-value)")

34

Manhattan plot: Fisher's exact test with FDR

e

0 _|

—
M
=
2
Z
o
3 2 -
o
|
°
9
(&)
o
5]
O

m_

[
SR @@ @@ @ @@
T T T T T T
0 2000 4000 6000 8000 10000
SNPs

Once again, we can do the same with the uncorrected p-values and plot the Bonferroni
correction threshold.

log.pval <- -loglO(pval)
set.seed (1)
log.pval <- jitter(log.pval, amount=0.2)

plot(log.pval,
col = c("red", "royalblue"),
pch = 19,
cex = 1.5,
main="Manhattan plot: Fisher's exact test with Bonferroni correction",
x1lab="SNP loci", ylab="Uncorrected -loglO(p-value)",
cex.main=1)

bonferroni <- -10g10(0.05 / ncol(snps))
abline(h=bonferroni, col = "red")

35

Manhattan plot: Fisher's exact test with Bonferroni correction

o |
N
—~
(]
= o _|
]
T
o
N
o
—
[@)]
S
|
o
3 9
s
(8]
(O]
S
£
o
(8]
o
-]
LO_
O_

0 2000 4000 6000 8000

SNP loci

4.2 Multivariate methods
4.2.1 LASSO

LASS02 <- cv.glmnet(snps.corrected, phen, family="binomial",
lambda.min.ratio=0.01, alpha=1)
beta2 <- as.vector(t(coef(LASS02, s="lambda.min")))

selected2 <- which(beta2[-1] !=0)
n.snps.selected.LASS02 <- as.integer(length(selected?2))
snps.selected.LASS02 <- as.vector(selected2)
n.snps.selected.LASS02

[1] b

snps.selected.LASS02

[1] 7197 7199 7202 7206 7207

36

10000

LASSO has selected the same 5 SNPs as the univariate Fisher’s exact test.
Once again, we can examine the non-zero coefficients.

coefs.LASS02 <- betal[-1] [snps.selected.LASS02]
names (coefs.LASS02) <- as.character(snps.selected.LASS02)
coefs.LASS02

#it 7197 7199 7202 7206 7207
-1.086688e+01 -6.194127e-14 -3.355152e-14 -1.290443e-15 -1.032355e-14

And we can visually compare the coefficients generated by LASSO both before and after
the correction for population stratification with a side-by-side barplot.

coefs.combined <- rbind(abs(coefs.LASS0), abs(coefs.LASS02))
coefs.combined

#it 7197 7199 7202 7206 7207
[1,] 10.86688 6.194127e-14 3.355152e-14 1.290443e-15 1.032355e-14
[2,] 10.86688 6.194127e-14 3.355152e-14 1.290443e-15 1.032355e-14

myCol <- funky(2)

barplot(coefs.combined, beside=TRUE,
col=c(transp(myCol[1], 0.66), rep(transp(myCol[2], 0.66), 4)),
x1ab="SNPs selected",
ylab="Abs.val. of penalized regression coefficient",
main="LASS0: variable contributions \n
before and after correcting for pop. strat."

)

legend ("topright", c("Uncorrected","Corrected"), pch=15,cex=1.2,
col=myCol,
bty="1’l")

37

LASSO: variable contributions

before and after correcting for pop. strat.

o Uncorrected
= 7 ® Corrected
<
Qo
Q 0 —
=
(0]
(o]
o
c
)
)
(%]
L o
(@]
o
o
(0]
N
®
c
g v -
G
IS
>
172)
o)
< o
O p—
7197 7199 7202 7206 7207
SNPs selected

Have the coefficients been affected by the correction for population stratification? Why might
that be?

4.2.2 DAPC-based feature selection

We will repeat the DAPC-based feature selection procedure on the corrected SNPs matrix,
but this time, we can let the function snpzip do all the work by specifying its second argument
to be phen rather than a dapc object. (Type ?snpzip for more information).

set.seed(1)
result <- snpzip(snps.corrected, phen, method="single", xval.plot = FALSE, plot = TRUE,

38

DAPC

0.4

|
n o

PCA eigenvalues

0.3

Density

0.2

0.1

0.0

A

Discriminant function 1

39

Loading plot

0.005
|

7208

Loadings
0.003 0.004
|

0.002
|

0.001
|

0.000
|

Variables

par (ask=FALSE)

snps.selected.dapc <- result$FS[[2]]
n.snps.selected.dapc <- length(snps.selected.dapc)

n.snps.selected.dapc
[1] 5
snps.selected.dapc

[1] 7197 7199 7202 7206 7207

4.3 Interpreting the significance of the SNPs selected

The loadingplot function also invisibly returns information on the annotated variables. We
can store this in an object called sel.snps.

40

sel.snps <- loadingplot(dapcl$var.contr, thres=min.var.selected-.0001)

Loading plot

0.005
|

7208

0.004

0.003
|

Loadings

0.002
|

0.001
|

0.000
|

Variables

The object should look like this:

sel.snps

$threshold

[1] 0.003975383

##

$var.names

[1] "7197" "7199" "7202" "7206" "T7207"
##

$var.idx

7197 7199 7202 7206 7207

7197 7199 7202 7206 7207

##
$var.values
7197 7199 7202 7206 7207

0.004076383 0.004076383 0.004076383 0.004076383 0.004076383

41

Which SNPs are the most strongly correlated to antibiotic resistance?
The following command derives allelic profiles of these SNPs for each isolate:

sel.profiles <- apply(snps[,sel.snps$var.idx],1,paste,collapse="-")
head(sel.profiles)

#it isolate-1 isolate-2 isolate-3 isolate-4 isolate-5 isolate-6
"1-1-1-1-1" "0-0-0-0-0" "0-0-0-0-0" "0O-0-0-0-0" "0-0-0-0-0" "0-0-0-0-0"

table(sel.profiles)

sel.profiles
0-0-0-0-0 1-1-1-1-1
#i# 71 24

head(cbind.data.frame(phen,sel.profiles),10)

#it phen sel.profiles
isolate-1 R
isolate-2
isolate-3
isolate-4
isolate-5
isolate-6
isolate-7
isolate-8
isolate-9
isolate-10

O O O O O O O O O =

-1-1-1-
-0-0-0-
-0-0-0-
~0-0-0-
~0-0-0-
~0-0-0-
~0-0-0-
-0-0-0-
-0-0-0-
~0-0-0-

N 0NN 22 2 2 \2 2
O O O O O O O O O =

tail(cbind.data.frame(phen,sel.profiles),10)

#i#t phen sel.profiles
isolate-86 S
isolate-87
isolate—-88
isolate-89
isolate-90
isolate-91
isolate-92
isolate-93
isolate-94
isolate-95

= =, O O Fr O O O O O

-0-0-0-
~0-0-0-
~0-0-0-
~0-0-0-
~0-0-0-
~1-1-1-
-0-0-0-
~0-0-0-
-1-1-1-
~1-1-1-

W TN W
R R OO R OOOO O

A contingency table between phenotype and SNPs profile can be created using table:

42

table(phen,sel.profiles)

sel.profiles

phen 0-0-0-0-0 1-1-1-1-1
#it R 0 24
#i S 71 0

What can you conclude on these SNPs? Assuming that their position in the dataset reflects
their original position in the genome, would you think that each of these SNPs actually
determines the antibiotic resistance? How would you address this question?

43

5 The adegenet Server

As of version 1.4-0 of adegenet, a web interface for DAPC can be started from R using:

adegenetServer ("DAPC")

44

	The data
	First assessment of the genetic diversity
	Identifying SNPs linked to antibiotic resistance

	Association testing and feature selection
	Univariate method
	Multivariate methods
	LASSO
	DAPC-based feature selection
	A little more on DAPC-based feature selection

	Correcting for population stratification
	Association testing and feature selection after correcting
	Univariate method
	Multivariate methods
	LASSO
	DAPC-based feature selection

	Interpreting the significance of the SNPs selected

	The adegenet Server

