
Genome-Wide Association Studies

Caitlin Collins∗, Thibaut Jombart

Imperial College London

MRC Centre for Outbreak Analysis and Modelling

October 30, 2014

Abstract

This practical provides an introduction to Genome-Wide Association Studies in R .
First, we will examine population structures within the data. Second, we will test for
associations between a genome-wide SNP panel and our phenotypic trait of interest:
antibiotic resistance. We will carry out this test and perform feature selection with
three separate methods: The univariate Fisher’s exact test, the multivariate penalized
regression technique LASSO, and with an extension of the multivariate factorial method
DAPC . Then, we will use PCA to correct for population stratification. Finally, we will
re-run the three methods of association testing and feature selection on the ”corrected”
dataset and compare the results.

∗caitlin.collins12@imperial.ac.uk

1

Contents

1 The data 3
1.1 First assessment of the genetic diversity . 5
1.2 Identifying SNPs linked to antibiotic resistance 12

2 Association testing and feature selection 15
2.1 Univariate method . 15
2.2 Multivariate methods . 17

2.2.1 LASSO . 17
2.2.2 DAPC-based feature selection . 19
2.2.3 A little more on DAPC-based feature selection 23

3 Correcting for population stratification 28

4 Association testing and feature selection after correcting 32
4.1 Univariate method . 32
4.2 Multivariate methods . 36

4.2.1 LASSO . 36
4.2.2 DAPC-based feature selection . 38

4.3 Interpreting the significance of the SNPs selected 40

5 The adegenet Server 44

2

1 The data

library(adegenet)

install.packages("glmnet", dep=TRUE)

library(glmnet)

Loading required package: ade4

==========================

adegenet 1.4-1 is loaded

==========================

##

- to start, type ’?adegenet’

- to browse adegenet website, type ’adegenetWeb()’

- to post questions/comments: adegenet-forum@lists.r-forge.r-project.org

##

##

Loading required package: Matrix

Loaded glmnet 1.9-5

The simulated data used in this practical are available online from the following address:
http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData. The dataset
is in R’s binary format (extension RData), which uses compression to store data efficiently
(the raw csv file would be more than 4MB). R objects can be loaded into R using load. The
instruction url is required to load the data directly from the internet; as data are loaded, a
new object simGWAS appears in the R environment:

load(url("http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData"))

ls(pattern="sim")

[1] "simGWAS"

class(simGWAS)

[1] "list"

names(simGWAS)

[1] "snps" "phen"

class(simGWAS$snps)

[1] "matrix"

class(simGWAS$phen)

3

http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData

[1] "character"

dim(simGWAS$snps)

[1] 95 10000

simGWAS$snps[1:10,1:20]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

isolate-1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1

isolate-2 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1

isolate-3 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1

isolate-4 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0

isolate-5 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0

isolate-6 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1

isolate-7 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0

isolate-8 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0

isolate-9 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1

isolate-10 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1

print(object.size(simGWAS$snps), unit="Mb")

7.8 Mb

length(simGWAS$phen)

[1] 95

simGWAS$phen

[1] "R" "S" "S" "S" "S" "S" "S" "S" "S" "S" "S" "R" "S" "S" "R" "S" "S"

[18] "S" "S" "S" "S" "S" "R" "S" "S" "S" "S" "S" "S" "S" "R" "R" "S" "S"

[35] "S" "S" "R" "S" "S" "R" "R" "R" "S" "S" "S" "R" "S" "S" "S" "S" "S"

[52] "S" "S" "S" "R" "R" "S" "S" "S" "S" "S" "S" "S" "S" "S" "S" "S" "S"

[69] "S" "R" "R" "R" "S" "S" "R" "S" "R" "R" "R" "R" "S" "S" "S" "S" "S"

[86] "S" "S" "S" "S" "S" "R" "S" "S" "R" "R"

table(simGWAS$phen)

##

R S

24 71

The object simGWAS is a list with two components: $snps is a matrix of Single Nucleotide
Polymorphism (SNPs) data, and $phen is the phenotype of the different sampled isolates.In
this analysis, the individuals are isolates of bacteria, and the phenotype of interest is antibiotic

4

resistance. The ’R’ and ’S’ in the above table stand for the two levels of this phenotype:
’Resistant’ and ’Susceptible’.
The SNPs data has a modest size by GWAS standards: only 95 isolates (in row) and 10000
SNPs (alleles coded as 0/1). Note that here, all SNPs are binary, so that only one allele needs
to be stored. Consequently, we do not need to use the genind class to store the data (this
would be a waste of RAM - not a problem here, but definitely a concern for larger datasets).
To simplify further commands, we create the new objects snps and phen from simGWAS:

snps <- simGWAS$snps

phen <- factor(simGWAS$phen)

1.1 First assessment of the genetic diversity

Principal Component Analysis (PCA) is a very powerful tool for reducing the diversity
contained in massively multivariate data into a few synthetic variables (the principal
components — PCs). There are several versions of PCA implemented in R. Here, we
use dudi.pca from the ade4 package, specifying that variables should not be scaled
(scale=FALSE) to unit variances (this is only useful when variables have inherently different
scales of variation, which is not the case here):

pca1 <- dudi.pca(snps, scale=FALSE)

5

PCA eigenvalues

0
5

10
15

20
25

30

The method displays a screeplot (barplot of eigenvalues) to help the user decide how
many PCs should be retained. The general rule is to retain only the largest eigenvalues, after
which non-structured variation results in smoothly decreasing eigenvalues. How many PCs
would you retain here?

pca1

Duality diagramm

class: pca dudi

$call: dudi.pca(df = snps, scale = FALSE, scannf = FALSE, nf = 4)

##

$nf: 4 axis-components saved

$rank: 94

eigen values: 31.76 28.77 28.13 25.72 21.68 ...

vector length mode content

1 $cw 10000 numeric column weights

2 $lw 95 numeric row weights

3 $eig 94 numeric eigen values

##

6

data.frame nrow ncol content

1 $tab 95 10000 modified array

2 $li 95 4 row coordinates

3 $l1 95 4 row normed scores

4 $co 10000 4 column coordinates

5 $c1 10000 4 column normed scores

other elements: cent norm

The object pca1 contains various information. Most importantly:

• pca1$eig: contains the eigenvalues of the analysis, representing the amount of
information contained in each PC.

• pca1$li: contains the principal components.

• pca1$c1: contains the principal axes (loadings of the variables).

head(pca1$eig)

[1] 31.75594 28.77240 28.12875 25.72180 21.68303 21.36911

head(pca1$li)

Axis1 Axis2 Axis3 Axis4

isolate-1 3.606420 -2.132999 9.622764 -6.301912

isolate-2 1.912918 -1.656548 8.734490 -10.006055

isolate-3 2.316603 -2.564638 9.324818 -7.445660

isolate-4 2.490536 -2.484711 8.819193 -6.029816

isolate-5 2.448958 -1.489571 8.576321 -8.775661

isolate-6 2.938701 -2.693103 10.876804 -3.797021

head(pca1$c1)

CS1 CS2 CS3 CS4

X1 1.004273e-02 0.004291539 -0.003509719 -0.0092503284

X2 -5.145732e-03 -0.003539221 -0.001470553 0.0075073374

X3 -3.349998e-05 -0.003362894 0.003797944 0.0013048886

X4 -1.017829e-03 0.002489303 -0.002323418 -0.0007847613

X5 7.047362e-03 0.007801922 -0.003475240 0.0057483659

X6 -1.011989e-02 0.013435213 0.021812199 -0.0321210072

Because of the large number of variables, the usual biplot (function scatter) is useless to
visualize the results (try scatter(pca1) if unsure). We represent only PCs using s.label:

7

s.label(pca1$li, sub="PCA - PC 1 and 2")

add.scatter.eig(pca1$eig,4,1,2, ratio=.3, posi="topleft")

 d = 5

 PCA − PC 1 and 2

 isolate−1
 isolate−2

 isolate−3 isolate−4

 isolate−5

 isolate−6

 isolate−7
 isolate−8

 isolate−9
 isolate−10

 isolate−11
 isolate−12 isolate−13

 isolate−14

 isolate−15

 isolate−16

 isolate−17 isolate−18

 isolate−19
 isolate−20 isolate−21

 isolate−22

 isolate−23
 isolate−24

 isolate−25

 isolate−26

 isolate−27 isolate−28

 isolate−29
 isolate−30

 isolate−31

 isolate−32
 isolate−33

 isolate−34

 isolate−35

 isolate−36

 isolate−37

 isolate−38

 isolate−39

 isolate−40

 isolate−41

 isolate−42

 isolate−43 isolate−44
 isolate−45

 isolate−46

 isolate−47

 isolate−48

 isolate−49

 isolate−50

 isolate−51

 isolate−52
 isolate−53

 isolate−54

 isolate−55

 isolate−56

 isolate−57

 isolate−58

 isolate−59
 isolate−60

 isolate−61 isolate−62

 isolate−63

 isolate−64

 isolate−65

 isolate−66
 isolate−67

 isolate−68

 isolate−69 isolate−70

 isolate−71

 isolate−72

 isolate−73
 isolate−74

 isolate−75

 isolate−76

 isolate−77

 isolate−78
 isolate−79

 isolate−80

 isolate−81

 isolate−82
 isolate−83

 isolate−84 isolate−85
 isolate−86 isolate−87 isolate−88

 isolate−89
 isolate−90

 isolate−91 isolate−92

 isolate−93

 isolate−94
 isolate−95

 Eigenvalues

What can you say about the genetic relationships between the isolates? Are there indications
of distinct lineages of bacteria? If so, how many lineages would you count?
For a more quantitative assessment of this clustering, we derive squared Euclidean distances
between isolates (function dist) and use hierarchical clustering with complete linkage
(hclust) to define tight clusters:

D <- dist(pca1$li[,1:4])^2

clust <- hclust(D, method="complete")

We can plot the distances stored in the dist object D in a heatmap with the follwing
commands.

temp <- as.data.frame(as.matrix(D))

temp <- t(as.matrix(D))

temp <- temp[,ncol(temp):1]

8

par(mar=c(1,5,5,1))

image(x=1:95, y=1:95, temp, col=rev(heat.colors(nlevels(as.factor(D)))),

xaxt="n", yaxt="n",

xlab="",ylab="")

axis(side=2, at=1:95, lab=rev(rownames(snps)), las=2, cex.axis=.46)

axis(side=3, at=1:95, lab=rownames(snps), las=2, cex.axis=.46)

isolate−95
isolate−94
isolate−93
isolate−92
isolate−91
isolate−90
isolate−89
isolate−88
isolate−87
isolate−86
isolate−85
isolate−84
isolate−83
isolate−82
isolate−81
isolate−80
isolate−79
isolate−78
isolate−77
isolate−76
isolate−75
isolate−74
isolate−73
isolate−72
isolate−71
isolate−70
isolate−69
isolate−68
isolate−67
isolate−66
isolate−65
isolate−64
isolate−63
isolate−62
isolate−61
isolate−60
isolate−59
isolate−58
isolate−57
isolate−56
isolate−55
isolate−54
isolate−53
isolate−52
isolate−51
isolate−50
isolate−49
isolate−48
isolate−47
isolate−46
isolate−45
isolate−44
isolate−43
isolate−42
isolate−41
isolate−40
isolate−39
isolate−38
isolate−37
isolate−36
isolate−35
isolate−34
isolate−33
isolate−32
isolate−31
isolate−30
isolate−29
isolate−28
isolate−27
isolate−26
isolate−25
isolate−24
isolate−23
isolate−22
isolate−21
isolate−20
isolate−19
isolate−18
isolate−17
isolate−16
isolate−15
isolate−14
isolate−13
isolate−12
isolate−11
isolate−10

isolate−9
isolate−8
isolate−7
isolate−6
isolate−5
isolate−4
isolate−3
isolate−2
isolate−1

is
ol

at
e−

1
is

ol
at

e−
2

is
ol

at
e−

3
is

ol
at

e−
4

is
ol

at
e−

5
is

ol
at

e−
6

is
ol

at
e−

7
is

ol
at

e−
8

is
ol

at
e−

9
is

ol
at

e−
10

is
ol

at
e−

11
is

ol
at

e−
12

is
ol

at
e−

13
is

ol
at

e−
14

is
ol

at
e−

15
is

ol
at

e−
16

is
ol

at
e−

17
is

ol
at

e−
18

is
ol

at
e−

19
is

ol
at

e−
20

is
ol

at
e−

21
is

ol
at

e−
22

is
ol

at
e−

23
is

ol
at

e−
24

is
ol

at
e−

25
is

ol
at

e−
26

is
ol

at
e−

27
is

ol
at

e−
28

is
ol

at
e−

29
is

ol
at

e−
30

is
ol

at
e−

31
is

ol
at

e−
32

is
ol

at
e−

33
is

ol
at

e−
34

is
ol

at
e−

35
is

ol
at

e−
36

is
ol

at
e−

37
is

ol
at

e−
38

is
ol

at
e−

39
is

ol
at

e−
40

is
ol

at
e−

41
is

ol
at

e−
42

is
ol

at
e−

43
is

ol
at

e−
44

is
ol

at
e−

45
is

ol
at

e−
46

is
ol

at
e−

47
is

ol
at

e−
48

is
ol

at
e−

49
is

ol
at

e−
50

is
ol

at
e−

51
is

ol
at

e−
52

is
ol

at
e−

53
is

ol
at

e−
54

is
ol

at
e−

55
is

ol
at

e−
56

is
ol

at
e−

57
is

ol
at

e−
58

is
ol

at
e−

59
is

ol
at

e−
60

is
ol

at
e−

61
is

ol
at

e−
62

is
ol

at
e−

63
is

ol
at

e−
64

is
ol

at
e−

65
is

ol
at

e−
66

is
ol

at
e−

67
is

ol
at

e−
68

is
ol

at
e−

69
is

ol
at

e−
70

is
ol

at
e−

71
is

ol
at

e−
72

is
ol

at
e−

73
is

ol
at

e−
74

is
ol

at
e−

75
is

ol
at

e−
76

is
ol

at
e−

77
is

ol
at

e−
78

is
ol

at
e−

79
is

ol
at

e−
80

is
ol

at
e−

81
is

ol
at

e−
82

is
ol

at
e−

83
is

ol
at

e−
84

is
ol

at
e−

85
is

ol
at

e−
86

is
ol

at
e−

87
is

ol
at

e−
88

is
ol

at
e−

89
is

ol
at

e−
90

is
ol

at
e−

91
is

ol
at

e−
92

is
ol

at
e−

93
is

ol
at

e−
94

is
ol

at
e−

95

par(mar=c(5.1,4.1,4.1,2.1))

Based on this distance matrix, what do you predict the topology of a complete-linkage
hierarchical clustering tree will look like?

plot(clust, main="Clustering (complete linkage) based on the first 4 PCs", cex=.4)

9

is
ol

at
e−

19
is

ol
at

e−
26

is
ol

at
e−

18
is

ol
at

e−
25

is
ol

at
e−

17
is

ol
at

e−
29

is
ol

at
e−

22
is

ol
at

e−
28

is
ol

at
e−

27
is

ol
at

e−
21

is
ol

at
e−

30
is

ol
at

e−
20

is
ol

at
e−

23
is

ol
at

e−
16

is
ol

at
e−

24
is

ol
at

e−
93

is
ol

at
e−

86
is

ol
at

e−
87

is
ol

at
e−

91
is

ol
at

e−
92

is
ol

at
e−

81
is

ol
at

e−
89

is
ol

at
e−

82
is

ol
at

e−
83

is
ol

at
e−

94
is

ol
at

e−
85

is
ol

at
e−

88
is

ol
at

e−
95

is
ol

at
e−

84
is

ol
at

e−
90

is
ol

at
e−

15
is

ol
at

e−
6

is
ol

at
e−

14
is

ol
at

e−
7

is
ol

at
e−

3
is

ol
at

e−
10

is
ol

at
e−

1
is

ol
at

e−
4

is
ol

at
e−

11
is

ol
at

e−
12

is
ol

at
e−

2
is

ol
at

e−
5

is
ol

at
e−

9
is

ol
at

e−
8

is
ol

at
e−

13
is

ol
at

e−
40

is
ol

at
e−

48
is

ol
at

e−
37

is
ol

at
e−

31
is

ol
at

e−
46

is
ol

at
e−

42
is

ol
at

e−
49

is
ol

at
e−

47
is

ol
at

e−
32

is
ol

at
e−

43
is

ol
at

e−
41

is
ol

at
e−

39
is

ol
at

e−
33

is
ol

at
e−

44
is

ol
at

e−
35

is
ol

at
e−

36
is

ol
at

e−
38

is
ol

at
e−

50
is

ol
at

e−
34

is
ol

at
e−

45
is

ol
at

e−
51

is
ol

at
e−

67
is

ol
at

e−
68

is
ol

at
e−

61
is

ol
at

e−
74

is
ol

at
e−

63
is

ol
at

e−
78

is
ol

at
e−

53
is

ol
at

e−
73

is
ol

at
e−

57
is

ol
at

e−
66

is
ol

at
e−

56
is

ol
at

e−
80

is
ol

at
e−

60
is

ol
at

e−
52

is
ol

at
e−

70
is

ol
at

e−
62

is
ol

at
e−

65
is

ol
at

e−
71

is
ol

at
e−

77
is

ol
at

e−
59

is
ol

at
e−

75
is

ol
at

e−
54

is
ol

at
e−

72
is

ol
at

e−
69

is
ol

at
e−

58
is

ol
at

e−
79

is
ol

at
e−

76
is

ol
at

e−
55

is
ol

at
e−

64

0
10

0
20

0
30

0
40

0
50

0
60

0

Clustering (complete linkage) based on the first 4 PCs

hclust (*, "complete")
D

H
ei

gh
t

How many clusters are there in the data? How does it compare to what you would
have assessed based on the first two PCs of PCA? Bonus question: considering that the
original data are profile of binary SNPs, what does the ’height’ represent in this dendrogram?

You can define clusters as before based on the dendrogram clust, using cutree:

pop <- factor(cutree(clust, k=5))

head(pop,20)

isolate-1 isolate-2 isolate-3 isolate-4 isolate-5 isolate-6

1 1 1 1 1 1

isolate-7 isolate-8 isolate-9 isolate-10 isolate-11 isolate-12

1 1 1 1 1 1

isolate-13 isolate-14 isolate-15 isolate-16 isolate-17 isolate-18

1 1 1 2 2 2

isolate-19 isolate-20

2 2

Levels: 1 2 3 4 5

10

Now, we can represent these groups on top of the PCs using s.class (clusters are
indicated by different colors and ellipses):

s.class(pca1$li, fac=pop, col=transp(funky(5)), cpoint=2,

sub="PCA - axes 1 and 2")

add.scatter.eig(pca1$eig,4,1,2, ratio=.26, posi="topleft")

 d = 5

 PCA − axes 1 and 2

 1 2

 3

 4

 5

 Eigenvalues

We do the same for PCs 3 and 4:

s.class(pca1$li, xax=3, yax=4, fac=pop, col=transp(funky(5)),

cpoint=2, sub="PCA - axes 3 and 4")

add.scatter.eig(pca1$eig,4,1,2, ratio=.26, posi="topleft")

11

 d = 5

 PCA − axes 3 and 4

 1

 2

 3

 4

 5

 Eigenvalues

Are the clusters compatible with the results of the PCA? What is the meaning of the 3rd
axis of the PCA? How many dimensions are needed to differentiate the 5 groups?

1.2 Identifying SNPs linked to antibiotic resistance

The data contained in phen indicate whether isolates are susceptible or resistant to a given
antibiotic (S/R):

head(phen,10)

[1] R S S S S S S S S S

Levels: R S

Our purpose in GWASis to attempt to identify the variables associated with the variation
between specific phenotypic groups of interest (in our case, the SNPs that most contribute to
the difference between the resistant and the susceptible bacteria). Let’s first see if the axes
of variation generated by PCA are able to discriminate between our two phenotypic groups.

As we have done with genetic clusters previously, we can represent these two groups on
the PCs to assess whether antibiotic resistance correlates to some components of the genetic
diversity.

12

s.class(pca1$li, fac=phen, col=transp(c("royalblue","red")), cpoint=2,

sub="PCA - axes 1 and 2")

add.scatter.eig(pca1$eig,4,1,2, ratio=.24, posi="topleft")

 d = 5

 PCA − axes 1 and 2

 R

 S

 Eigenvalues

s.class(pca1$li, xax=3, yax=4, fac=phen, col=transp(c("royalblue","red")),

cpoint=2, sub="PCA - axes 3 and 4")

add.scatter.eig(pca1$eig,4,1,2, ratio=.24, posi="topleft")

13

 d = 5

 PCA − axes 3 and 4

 R

 S

 Eigenvalues

This visual assessment can be completed by a standard Chi-square test to check if there is
an association between genetic clusters and resistance:

table(phen, pop)

pop

phen 1 2 3 4 5

R 3 1 7 10 3

S 12 14 13 20 12

chisq.test(table(phen, pop), simulate=TRUE)

##

Pearson's Chi-squared test with simulated p-value (based on 2000

replicates)

##

data: table(phen, pop)

X-squared = 5.2267, df = NA, p-value = 0.2694

14

What do you conclude? Is antibiotic resistance correlated to the main genetic features of
these isolates?

2 Association testing and feature selection

2.1 Univariate method

pval <- apply(snps, 2, function(e)

fisher.test(table(factor(e, levels=c(0,1)), phen))$p.value)

min(pval)

[1] 5.108221e-23

length(which(pval < 0.05))

[1] 331

As we are carrying out one univariate test for every SNP in our dataset, we must now
correct for multiple testing.

pval.corrected <- p.adjust(pval, method="fdr")

min(pval.corrected)

[1] 1.021644e-19

We can now use these corrected p-values as our univariate selection criteria for feature
selection.

snps.selected.univariate <- which(pval.corrected < 0.05)

n.snps.selected.univariate <- length(snps.selected.univariate)

n.snps.selected.univariate

[1] 5

snps.selected.univariate

7197 7199 7202 7206 7207

7197 7199 7202 7206 7207

We can now visualise the results of this analysis with a Manhattan Plot, which is the
type of plot most commonly used to represent the results of GWAS analyses.

15

log.pval <- -log10(pval.corrected)

set.seed(1)

log.pval <- jitter(log.pval, amount=0.2)

plot(log.pval,

col = c("red", "royalblue"),

pch = 19,

cex = 1.5,

main="Manhattan plot: Fisher's exact test with FDR",

xlab="SNPs", ylab="Corrected -log10(p-value)")

0 2000 4000 6000 8000 10000

0
5

10
15

Manhattan plot: Fisher's exact test with FDR

SNPs

C
or

re
ct

ed
 −

lo
g1

0(
p−

va
lu

e)

For the purposes of comparison, let’s also generate a Manhattan Plot with our original
uncorrected p-values, this time representing our results with the Bonferroni correction for
multiple testing.

log.pval <- -log10(pval)

set.seed(1)

log.pval <- jitter(log.pval, amount=0.2)

16

plot(log.pval,

col = c("red", "royalblue"),

pch = 19,

cex = 1.5,

main="Manhattan plot: Fisher's exact test with Bonferroni correction",

xlab="SNP loci", ylab="Uncorrected -log10(p-value)",

cex.main=1)

bonferroni <- -log10(0.05 / ncol(snps))

abline(h=bonferroni, col = "red")

0 2000 4000 6000 8000 10000

0
5

10
15

20

Manhattan plot: Fisher's exact test with Bonferroni correction

SNP loci

U
nc

or
re

ct
ed

 −
lo

g1
0(

p−
va

lu
e)

2.2 Multivariate methods

2.2.1 LASSO

To test for association with the LASSO penalized regression method, we use the function
cv.glmnet from package glmnet. This will allow us to generate a vector of coefficients for
each variable, the majority of which will be shrunk to zero in LASSO’s penalization step.

17

LASSO <- cv.glmnet(snps, phen, family="binomial", lambda.min.ratio=0.01, alpha=1)

beta <- as.vector(t(coef(LASSO, s="lambda.min")))

What does the ’cv’ in the cv.glmnet function stand for? And why have we set
lambda.min.ratio to 0.01?
We can now carry out feature selection. Recall that in LASSO penalized regression, the
tuning parameter lambda specifies the extent of the penalty on the L1 norm, and hence it
also determines the shrinkage of the coefficients for each variable towards zero. In feature
selection by the LASSO method, the variables selected are those with non-zero coefficients
when lambda is at its optimal minimum.

selected <- which(beta[-1] !=0)

n.snps.selected.LASSO <- as.integer(length(selected))

snps.selected.LASSO <- as.vector(selected)

n.snps.selected.LASSO

[1] 5

snps.selected.LASSO

[1] 7197 7199 7202 7206 7207

LASSO has selected the same 5 SNPs as the univariate Fisher’s exact test.
Let’s take a closer look at the coefficients assigned to each of the SNPs selected by LASSO.

coefs.LASSO <- beta[-1][snps.selected.LASSO]

names(coefs.LASSO) <- as.character(snps.selected.LASSO)

coefs.LASSO

7197 7199 7202 7206 7207

-1.086688e+01 -6.194127e-14 -3.355152e-14 -1.290443e-15 -1.032355e-14

Note that the coefficient for the first SNP is substantially larger than the coefficients for the
other 4 SNPs selected by LASSO, which are very near zero.
We may be able to better examine the differences between these coefficients by plotting them
with a simple barplot.

myCol <- funky(1)

barplot(abs(coefs.LASSO),

col=c(transp(myCol[1], 0.66)),

xlab="SNPs selected",

ylab="Abs.val. of penalized regression coefficient",

main="LASSO: variable contributions")

18

7197 7199 7202 7206 7207

LASSO: variable contributions

SNPs selected

A
bs

.v
al

. o
f p

en
al

iz
ed

 r
eg

re
ss

io
n

co
ef

fic
ie

nt

0
2

4
6

8
10

What is your interpretation of these coefficients? What do they tell you about the relative
importance of each of the SNPs selected?

2.2.2 DAPC-based feature selection

We begin the DAPC approach to feature selection by running cross-validation to help us
select the number of PCs of PCA to retain that will maximize our ability to discriminate
between our two phenotypic groups.

set.seed(1)

xval <- xvalDapc(snps, phen) ## this may take a moment...

KernSmooth 2.23 loaded

Copyright M. P. Wand 1997-2009

19

10 20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DAPC Cross−Validation

Number of PCA axes retained

P
ro

po
rt

io
n

of
 s

uc
ce

ss
fu

l o
ut

co
m

e
pr

ed
ic

tio
n

NULL

Based on the plot generated by xvalDapc, considering that the horizontal lines are the mean
(solid line) and 95% Confidence interval (dashed lines) for random chance, do you trust that
cross-validation has been successful in selecting a model that is useful in assigning individuals
to the correct phenotypic group?
Let’s take a look at the object xval containing the results of cross-validation:

xval[2:6]

$`Median and Confidence Interval for Random Chance`

2.5% 50% 97.5%

0.4146127 0.4982394 0.6097418

##

$`Mean Successful Assignment by Number of PCs of PCA`

10 20 30 40 50 60 70

0.7130952 0.7357143 0.7190476 0.6738095 0.5488095 0.6190476 0.5035714

80

20

0.5428571

##

$`Number of PCs Achieving Highest Mean Success`

[1] "20"

##

$`Root Mean Squared Error by Number of PCs of PCA`

10 20 30 40 50 60 70

0.3428695 0.3198373 0.3216930 0.3649154 0.4868596 0.4400255 0.5455058

80

0.5034743

##

$`Number of PCs Achieving Lowest MSE`

[1] "20"

Does this help you answer the previous question?
Based on the results of cross-validation, how many PCs of PCA should you retain in your
DAPC? For the purpose of this analysis (hint: and for all Case-Control GWAS analyses),
how many DA axes should you retain? Why?
Create a DAPC object called dapc1 by running a DAPC with the n.pca and n.da you wish
to retain:

We can now use the function snpzip to perform feature selection and visualise our results.

set.seed(1)

result <- snpzip(snps, dapc1,

method="single", xval.plot = FALSE,

plot = TRUE, loading.plot = TRUE)

21

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Discriminant function 1

D
en

si
ty

||| ||| || ||| ||| ||| ||| || | ||| || | ||| | ||| | |||| | | | ||| || | | ||| || || ||| || || ||| | || || | ||| ||| | ||||| | || | ||| ||

R
S

PCA eigenvalues

DAPC

22

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Loading plot

Variables

Lo
ad

in
gs

71977199720272067207

par(ask=FALSE)

snps.selected.dapc <- result$FS[[2]]

n.snps.selected.dapc <- length(snps.selected.dapc)

n.snps.selected.dapc

[1] 5

snps.selected.dapc

[1] 7197 7199 7202 7206 7207

Again, we have managed to select the same 5 SNPs!

2.2.3 A little more on DAPC-based feature selection

As an aside, you may have noticed that the snps selected are so closely clustered together
both in the alignment and on the y-axis (according to their similar loadings) that we may

23

want to re-generate the loadingplot separately to modify the placement of the labels. We
can do this as so:

min.var.selected <- abs(dapc1$var.contr[snps.selected.dapc]

[(which.min(dapc1$var.contr[snps.selected.dapc]))])-0.000001

set.seed(41)

l.plot <- loadingplot(dapc1$var.contr[,1],

threshold=c(min.var.selected), lab.jitter=7.5)

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Loading plot

Variables

Lo
ad

in
gs

7197
7199

7202

7206

7207

Not perfect, but much better!
Let’s also examine what would have resulted from DAPC-based feature selection if:

1) We had only retained the first 5 PCs of PCA:

result5 <- snpzip(snps, dapc(snps, phen, n.da=1, n.pca=5),

method="single", xval.plot = FALSE,

plot = TRUE, loading.plot = TRUE)

24

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Discriminant function 1

D
en

si
ty

||| || | || | || || || | | ||| || || || | || ||| || ||| || | || || ||| | ||| || ||| || | || |||| | || ||| ||| | | | ||| |||| || ||| ||| |||

R
S

PCA eigenvalues

DAPC

25

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Loading plot

Variables

Lo
ad

in
gs

4252

2) We had selected a different hierarchical clustering method for performing feature selection:

result.ward <- suppressWarnings(snpzip(snps, dapc1,

method="ward", xval.plot = FALSE,

plot = TRUE, loading.plot = TRUE))

The "ward" method has been renamed to "ward.D"; note new "ward.D2"

26

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Discriminant function 1

D
en

si
ty

||| ||| || ||| ||| ||| ||| || | ||| || | ||| | ||| | |||| | | | ||| || | | ||| || || ||| || || ||| | || || | ||| ||| | ||||| | || | ||| ||

R
S

PCA eigenvalues

DAPC

27

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Loading plot

Variables

Lo
ad

in
gs

7
14
2231

75

79
80

96

120
121

149

155
163
166242
256
257
261

269

293

306

362381392
393

403408

426

435

441

445

453

466

477

488

495

496499
507511545

598

616638644
675
676
679699

721

735

753

808

837

845
853864

889

922964
982

1009

1024

1041

1064

1080

1082

1090

1093

1110

1226
12421289

1327

1383

1429

14411456

1483

1485

1514
1549156115871596
1611
1624

1666

17081717

1741

175717691776

18131814

1868

1914

1919

1939

1967
1989
2024
2041

2054

2071
2090

2091

21142119
212821332148

2150

2185

2208

22352262

2280

22962319
2379

2382
2396
2409
2428

2435

2438

244724542494

253525382570
25772579

2599

2625

2633

26422654

2697

2703
2771

2776

28012833

2841

286228722882

2887
291029172935

2943

2975

2982

2993

2994

301230333064
3122

3135

3172
3196

3207

3213
321732303238
32623299

3356

3388
3398
340834173424

3451

3453

34613466

3471

3511
3563

3595

36353656
36683682

3686

3710
37123715

3728

37323742

3755

3763

37833796
3836
3899
3900

39083913

3934
3950
395539673972

3983

40084038

4052

4056

4062
4076

4091
4138

4173

4175
419042124238

4239
4252

4288

4304

4311

4339
4340
4343

4348
4368
4375

4389

4404

4413

4437

44534459

4472

4477
4501
454145524580

4582

4612
4631

4644

4656

4681

4706
47114714
4738

4747

4777
4844

4872
48734888490549194928
4974

4999

5003
5022
5028

503350555076
50975109

5114
51165138

5143

5169

5200

5249
5253

525853055329
5357

5360

5373
54235429

5431

54415446

5453

545654905509

55325536
5538
5544
5565
5572

5607

5608

5616
5617

56215641

5660
5676

57035725
5738
57515754578357975893

5904

5907

5919

5923
5968
5974

5985

5989
6035

6066

6087

6111

6169

6195

62186225624962516252
6256
6269

6323

6359

6369

637763876424

6473
6527
6537

65526556

6579660966316672
6683
66936702
6751
6759

6770

67866797

6801
68126822
6835

6837
686868746876

6903

69256939
6945

69476960

6976
70137029

7081

7109

7120

7125

7140
71557156

71777181

71977199720272067207

72147217

7228

7242

7262

7280

7287
72947348

7349

7382

7389
7411
74337498
7520
7531
7549
7568
7581
7583758875917654
7659771277457759

7761
7772

7775

7815

7867

7877
78847885
789879127938

7954

7960

7995

8033

8039
8044

80578063
8090

8125817482198232
82438264
82698281

8326

8327

8340

83598360
8417

8452

8456

8483

8486

85038519

8525

8526

85318552
8572
8581

85858595
8612
8632
8644

8650

8687

8703

87108719

8752

8754

8770

8797

8811
8857

8899

8917

8929

8997

9007
9062

9064
90679073
9087
91269140

91459169

9171
9185

9195
9199

9225
9283
9301

9308

931593279339

9356

9377

9381

9386

9391

9404

941194169417

9429

9434

943894609476

9486
9498

9505

95109526

9540
9576
9650
9674

9690

96939694970197089767

9815

9830

98319834

9857
9877
9883
9894

9911

991499279943
9975
9983

3 Correcting for population stratification

As we have already run a PCA to visualise the population structure in our first assessment of
genetic diversity, we have already generated the object pca1 that we will use to correct our
SNPs matrix for population stratification. We do this by regressing along the axes of PCA
required to visually diagnose the presence of our population clusters. In our case, this means
we will regress along the first 4 PCs of PCA, which were needed to separate the 5 groups we
identified.

snps.corrected <- apply(snps, 2, function(e)

residuals(lm(e~pca1$li[,1]+pca1$li[,2]+pca1$li[,3]+pca1$li[,4]))) # may take a minute

Let’s take a look at our corrected SNPs matrix.

dim(snps.corrected)

[1] 95 10000

28

snps.corrected[1:10,1:10]

1 2 3 4 5

isolate-1 -0.2094808 -0.3485827 -0.06695461 0.1316558 -0.3917387

isolate-2 -0.2319002 -0.3291088 -0.05720198 0.1237753 -0.3653154

isolate-3 -0.2063008 -0.3485991 -0.06582533 0.1298276 0.6262579

isolate-4 -0.1970682 0.6412060 0.93452210 0.1297420 -0.3854874

isolate-5 0.7728263 -0.3352291 -0.05762730 0.1245033 -0.3780183

isolate-6 0.8272011 0.6290381 -0.07689193 0.1372498 0.6072959

isolate-7 0.7646633 0.6636476 -0.06132759 0.1296980 0.5936000

isolate-8 -0.2236320 0.6578480 -0.05729049 -0.8754255 -0.3735933

isolate-9 -0.2256344 0.6540961 -0.05196910 0.1214080 0.6049000

isolate-10 -0.2111378 -0.3465306 -0.06255007 0.1277205 0.6185463

6 7 8 9 10

isolate-1 0.084415426 0.4540041 -0.4679964 -0.03934675 0.09755296

isolate-2 -0.038729468 0.4386883 -0.4309456 -0.01333862 0.09546631

isolate-3 0.046922304 0.4385147 0.5420833 -0.03620780 0.10738401

isolate-4 0.104115777 0.4475439 -0.4692778 -0.04520639 -0.88562099

isolate-5 0.007423331 -0.5511860 0.5586868 -0.01996659 0.09629192

isolate-6 0.138289522 0.4436872 -0.4987127 -0.06728938 0.10651813

isolate-7 -0.901639560 -0.5256087 0.5435540 -0.02454683 0.08954542

isolate-8 0.046535326 -0.5538419 -0.4391931 -0.02178992 0.11585796

isolate-9 0.095098715 -0.5328484 -0.4456315 -0.02360528 0.11303332

isolate-10 0.049522790 0.4470624 -0.4568193 -0.03345280 0.10245325

range(snps.corrected)

[1] -1.076927 1.082378

What kind of variable does our corrected SNPs matrix contain?
We can now run a second PCA analysis with the corrected SNPs matrix to visually assess

whether our correction for population stratification has been successful:

pca2 <- dudi.pca(snps.corrected, scale=FALSE, scannf=FALSE, nf=4)

First we can take a look at the eigenvalues for pca2.

barplot(pca2$eig, main="PCA eigenvalues")

29

PCA eigenvalues

0
5

10
15

20

What do you notice about these eigenvalues? What can you infer from this?
Next, we can visualise our original population substructure in this new PCA space.

s.class(pca2$li, fac=pop, col=transp(funky(5)), cpoint=2,

sub="PCA: PCs 1 and 2")

add.scatter.eig(pca2$eig,4,1,2, ratio=.21, posi="topleft")

30

 d = 5

 PCA: PCs 1 and 2

 1 2
 3 4
 5

 Eigenvalues

Our population clusters are no longer separated along axes 1 and 2!
What about axes 3 and 4?

s.class(pca2$li, xax=1, yax=3, fac=pop, col=transp(funky(5)), cpoint=2,

sub="PCA: PCs 1 and 3")

add.scatter.eig(pca2$eig,4,1,2, ratio=.21, posi="topleft")

31

 d = 5

 PCA: PCs 1 and 3

 1 2 3 4 5

 Eigenvalues

It seems our correction for population stratification has successfully eliminated the
potential confounding population structure!

4 Association testing and feature selection after

correcting

We can now re-run the three methods to test for associations between our corrected SNPs
and the antibiotic resistance phenotype.

4.1 Univariate method

While both multivariate methods for association testing and feature selection will be directly
repeatable in application to our newly corrected SNPs matrix, our univariate approach is no
longer valid!
Why do you think Fisher’s exact test is no longer appropriate here?
Instead of Fisher’s exact test we will use an alternative univariate approach that consists of
two stages. First, we generate a simple linear model between each column of our corrected
SNPs matrix and our phenotypic trait. Second, we run an analysis of variance (ANOVA) on

32

each model generated, specifying a Chi-squared test of association. From this,we can retrieve
a p-value for the significance of association between each corrected SNP and the resistance
phenotype.

pval2 <- numeric(0)

for(i in 1:ncol(snps.corrected)){
foo <- suppressWarnings(glm(phen ~ snps.corrected[,i], family="binomial"))

ANOVA <- anova(foo, test="Chisq")

pval2[i] <- ANOVA$"Pr(>Chi)"[2]

}

min(pval2, na.rm=TRUE)

[1] 3.657423e-25

We can then correct for multiple testing as we did in our initial univariate analysis, using
the False Discovery Rate.

pval.corrected2 <- p.adjust(pval2, method="fdr")

snps.selected.univariate2 <- which(pval.corrected2 < 0.05)

n.snps.selected.univariate2 <- length(snps.selected.univariate2)

n.snps.selected.univariate2

[1] 5

snps.selected.univariate2

[1] 7197 7199 7202 7206 7207

Once again, we have selected the same 5 SNPs as the set of genetic variables associated with
the resistance phenotype!
However, a comparison of the FDR-corrected p-values from before and after the correction
for population stratification will reveal that the p-values after correction are more significant
than those from before.

pval.corrected[snps.selected.univariate]

7197 7199 7202 7206 7207

1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19

pval.corrected2[snps.selected.univariate2]

[1] 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22

33

pval.combined <- rbind(pval.corrected[snps.selected.univariate],

pval.corrected2[snps.selected.univariate2])

rownames(pval.combined) <- c("Before", "After")

pval.combined

7197 7199 7202 7206 7207

Before 1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19 1.021644e-19

After 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22 7.240967e-22

What can you infer from this difference between the p-values?
Finally, we can generate the Manhattan Plots, as before:

log.pval <- -log10(pval.corrected)

set.seed(1)

log.pval <- jitter(log.pval, amount=0.2)

plot(log.pval,

col = c("red", "royalblue"),

pch = 19,

cex = 1.5,

main="Manhattan plot: Fisher's exact test with FDR",

xlab="SNPs", ylab="Corrected -log10(p-value)")

34

0 2000 4000 6000 8000 10000

0
5

10
15

Manhattan plot: Fisher's exact test with FDR

SNPs

C
or

re
ct

ed
 −

lo
g1

0(
p−

va
lu

e)

Once again, we can do the same with the uncorrected p-values and plot the Bonferroni
correction threshold.

log.pval <- -log10(pval)

set.seed(1)

log.pval <- jitter(log.pval, amount=0.2)

plot(log.pval,

col = c("red", "royalblue"),

pch = 19,

cex = 1.5,

main="Manhattan plot: Fisher's exact test with Bonferroni correction",

xlab="SNP loci", ylab="Uncorrected -log10(p-value)",

cex.main=1)

bonferroni <- -log10(0.05 / ncol(snps))

abline(h=bonferroni, col = "red")

35

0 2000 4000 6000 8000 10000

0
5

10
15

20

Manhattan plot: Fisher's exact test with Bonferroni correction

SNP loci

U
nc

or
re

ct
ed

 −
lo

g1
0(

p−
va

lu
e)

4.2 Multivariate methods

4.2.1 LASSO

LASSO2 <- cv.glmnet(snps.corrected, phen, family="binomial",

lambda.min.ratio=0.01, alpha=1)

beta2 <- as.vector(t(coef(LASSO2, s="lambda.min")))

selected2 <- which(beta2[-1] !=0)

n.snps.selected.LASSO2 <- as.integer(length(selected2))

snps.selected.LASSO2 <- as.vector(selected2)

n.snps.selected.LASSO2

[1] 5

snps.selected.LASSO2

[1] 7197 7199 7202 7206 7207

36

LASSO has selected the same 5 SNPs as the univariate Fisher’s exact test.
Once again, we can examine the non-zero coefficients.

coefs.LASSO2 <- beta[-1][snps.selected.LASSO2]

names(coefs.LASSO2) <- as.character(snps.selected.LASSO2)

coefs.LASSO2

7197 7199 7202 7206 7207

-1.086688e+01 -6.194127e-14 -3.355152e-14 -1.290443e-15 -1.032355e-14

And we can visually compare the coefficients generated by LASSO both before and after
the correction for population stratification with a side-by-side barplot.

coefs.combined <- rbind(abs(coefs.LASSO), abs(coefs.LASSO2))

coefs.combined

7197 7199 7202 7206 7207

[1,] 10.86688 6.194127e-14 3.355152e-14 1.290443e-15 1.032355e-14

[2,] 10.86688 6.194127e-14 3.355152e-14 1.290443e-15 1.032355e-14

myCol <- funky(2)

barplot(coefs.combined, beside=TRUE,

col=c(transp(myCol[1], 0.66), rep(transp(myCol[2], 0.66), 4)),

xlab="SNPs selected",

ylab="Abs.val. of penalized regression coefficient",

main="LASSO: variable contributions \n
before and after correcting for pop. strat."

)

legend("topright", c("Uncorrected","Corrected"), pch=15,cex=1.2,

col=myCol,

bty="n")

37

7197 7199 7202 7206 7207

LASSO: variable contributions

 before and after correcting for pop. strat.

SNPs selected

A
bs

.v
al

. o
f p

en
al

iz
ed

 r
eg

re
ss

io
n

co
ef

fic
ie

nt

0
2

4
6

8
10

Uncorrected
Corrected

Have the coefficients been affected by the correction for population stratification? Why might
that be?

4.2.2 DAPC-based feature selection

We will repeat the DAPC-based feature selection procedure on the corrected SNPs matrix,
but this time, we can let the function snpzip do all the work by specifying its second argument
to be phen rather than a dapc object. (Type ?snpzip for more information).

set.seed(1)

result <- snpzip(snps.corrected, phen, method="single", xval.plot = FALSE, plot = TRUE, loading.plot = TRUE)

38

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Discriminant function 1

D
en

si
ty

|| || || || ||| ||| || | || | ||| | || || ||| | | |||| |||| ||| |||| | | | || || || | ||| | | || ||| ||| || |||| ||| | | |||| | || | |||| |

R
S

PCA eigenvalues

DAPC

39

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Loading plot

Variables

Lo
ad

in
gs

71977199720272067207

par(ask=FALSE)

snps.selected.dapc <- result$FS[[2]]

n.snps.selected.dapc <- length(snps.selected.dapc)

n.snps.selected.dapc

[1] 5

snps.selected.dapc

[1] 7197 7199 7202 7206 7207

4.3 Interpreting the significance of the SNPs selected

The loadingplot function also invisibly returns information on the annotated variables. We
can store this in an object called sel.snps.

40

sel.snps <- loadingplot(dapc1$var.contr, thres=min.var.selected-.0001)

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Loading plot

Variables

Lo
ad

in
gs

71977199720272067207

The object should look like this:

sel.snps

$threshold

[1] 0.003975383

##

$var.names

[1] "7197" "7199" "7202" "7206" "7207"

##

$var.idx

7197 7199 7202 7206 7207

7197 7199 7202 7206 7207

##

$var.values

7197 7199 7202 7206 7207

0.004076383 0.004076383 0.004076383 0.004076383 0.004076383

41

Which SNPs are the most strongly correlated to antibiotic resistance?
The following command derives allelic profiles of these SNPs for each isolate:

sel.profiles <- apply(snps[,sel.snps$var.idx],1,paste,collapse="-")

head(sel.profiles)

isolate-1 isolate-2 isolate-3 isolate-4 isolate-5 isolate-6

"1-1-1-1-1" "0-0-0-0-0" "0-0-0-0-0" "0-0-0-0-0" "0-0-0-0-0" "0-0-0-0-0"

table(sel.profiles)

sel.profiles

0-0-0-0-0 1-1-1-1-1

71 24

head(cbind.data.frame(phen,sel.profiles),10)

phen sel.profiles

isolate-1 R 1-1-1-1-1

isolate-2 S 0-0-0-0-0

isolate-3 S 0-0-0-0-0

isolate-4 S 0-0-0-0-0

isolate-5 S 0-0-0-0-0

isolate-6 S 0-0-0-0-0

isolate-7 S 0-0-0-0-0

isolate-8 S 0-0-0-0-0

isolate-9 S 0-0-0-0-0

isolate-10 S 0-0-0-0-0

tail(cbind.data.frame(phen,sel.profiles),10)

phen sel.profiles

isolate-86 S 0-0-0-0-0

isolate-87 S 0-0-0-0-0

isolate-88 S 0-0-0-0-0

isolate-89 S 0-0-0-0-0

isolate-90 S 0-0-0-0-0

isolate-91 R 1-1-1-1-1

isolate-92 S 0-0-0-0-0

isolate-93 S 0-0-0-0-0

isolate-94 R 1-1-1-1-1

isolate-95 R 1-1-1-1-1

A contingency table between phenotype and SNPs profile can be created using table:

42

table(phen,sel.profiles)

sel.profiles

phen 0-0-0-0-0 1-1-1-1-1

R 0 24

S 71 0

What can you conclude on these SNPs? Assuming that their position in the dataset reflects
their original position in the genome, would you think that each of these SNPs actually
determines the antibiotic resistance? How would you address this question?

43

5 The adegenet Server

As of version 1.4-0 of adegenet, a web interface for DAPC can be started from R using:

adegenetServer("DAPC")

44

	The data
	First assessment of the genetic diversity
	Identifying SNPs linked to antibiotic resistance

	Association testing and feature selection
	Univariate method
	Multivariate methods
	LASSO
	DAPC-based feature selection
	A little more on DAPC-based feature selection

	Correcting for population stratification
	Association testing and feature selection after correcting
	Univariate method
	Multivariate methods
	LASSO
	DAPC-based feature selection

	Interpreting the significance of the SNPs selected

	The adegenet Server

