
Tutorial using the software

—————
Genetic data analysis using :
introduction to phylogenetics

Thibaut Jombart

—————

Abstract

This tutorial aims to illustrate the basics of phylogenetic reconstruction
using . Different kinds of phylogenetic approaches are introduced, namely
distance-based, maximum parsimony, and maximum likelihood methods.
We also illustrate how to assess the quality of phylogenetic trees using simple
approaches. Methods are illustrated using a toy dataset of seasonal influenza
isolates sampled in the US from 1993 to 2008.

Contents

1 Introduction 3
1.1 Required packages . 3
1.2 The data . 3

2 Distance-based phylogenies 5
2.1 Computing genetic distances 5
2.2 Building trees . 7
2.3 Plotting trees . 9
2.4 Assessing the quality of a phylogeny 12

3 Maximum parsimony phylogenies 18
3.1 Introduction . 18
3.2 Implementation . 18

1

4 Maximum likelihood phylogenies 20
4.1 Introduction . 20
4.2 Sorting out the data . 21
4.3 Getting a ML tree . 23

2

1 Introduction

1.1 Required packages

This tutorial requires a working version of [5] greater than or equal to
2.12.1. It uses the following packages: stats implements basic hierarchical
clustering routines, ade4 [1] and adegenet [2] are here used essentially for
their graphics, ape [4] is the core package for phylogenetics, and phangorn
[6] implements parsimony and likelihood based methods. Make sure that
the dependencies are installed as well when installing the packages:

> install.packages("adegenet", dep = TRUE)
> install.packages("phangorn", dep = TRUE)

Then load the packages using:

> library(stats)
> library(ade4)
> library(ape)
> library(adegenet)
> library(phangorn)

Some graphical functions used in this tutorial are also only part of the
devel version of adegenet, and may not be present in the installed version of
the package. To make sure these functions are available, source the patch
online:

> source("http://adegenet.r-forge.r-project.org/files/patches/auxil.R")

or simply install the devel version using:

> install.packages("adegenet", repos = "http://r-forge.r-project.org")

1.2 The data

The data used in this tutorial are DNA sequences of seasonal influenza
(H3N2) downloaded from Genbank (http://www.ncbi.nlm.nih.gov/genbank/).
Alignments have been realized beforehand using standard tools (Clustalw2
for basic alignment and Jalview for refining the results). We selected 80
isolates genotyped for the hemagglutinin (HA) segment sampled in the US
from 1993 to 2008. The dataset consists in two files: i) usflu.fasta, a
file containing aligned DNA sequences and ii) usflu.annot.csv, a comma-
separated file containing useful annotations of the sequences. In the follow-
ing, we assume that both these files are stored in a data directory.

To read the DNA sequences into R, we use read.dna from the ape pack-
age:

> dna <- read.dna(file = "data/usflu.fasta", format = "fasta")
> dna

3

http://www.ncbi.nlm.nih.gov/genbank/

80 DNA sequences in binary format stored in a matrix.

All sequences of same length: 1701

Labels: CY013200 CY013781 CY012128 CY013613 CY012160 CY012272 ...

Base composition:
a c g t

0.335 0.200 0.225 0.239

> class(dna)

[1] "DNAbin"

Sequences are stored as DNAbin objects, an efficient representation of DNA/RNA
sequences which use bytes (as opposed to character strings) to code nu-
cleotides:

> object.size(as.character(dna))/object.size(dna)

7.71879054549557 bytes

For instance, the first 10 nucleotides of the first 5 isolates:

> as.character(dna)[1:5, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
CY013200 "a" "t" "g" "a" "a" "g" "a" "c" "t" "a"
CY013781 "a" "t" "g" "a" "a" "g" "a" "c" "t" "a"
CY012128 "a" "t" "g" "a" "a" "g" "a" "c" "t" "a"
CY013613 "a" "t" "g" "a" "a" "g" "a" "c" "t" "a"
CY012160 "a" "t" "g" "a" "a" "g" "a" "c" "t" "a"

are actually coded as raw bytes:

> unclass(dna)[1:5, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
CY013200 88 18 48 88 88 48 88 28 18 88
CY013781 88 18 48 88 88 48 88 28 18 88
CY012128 88 18 48 88 88 48 88 28 18 88
CY013613 88 18 48 88 88 48 88 28 18 88
CY012160 88 18 48 88 88 48 88 28 18 88

> typeof(unclass(dna)[1:5, 1:10])

[1] "raw"

The annotation file is read in R using the standard procedure:

> annot <- read.csv("data/usflu.annot.csv", header = TRUE, row.names = 1)
> head(annot)

4

accession year misc
1 CY013200 1993 (A/New York/783/1993(H3N2))
2 CY013781 1993 (A/New York/802/1993(H3N2))
3 CY012128 1993 (A/New York/758/1993(H3N2))
4 CY013613 1993 (A/New York/766/1993(H3N2))
5 CY012160 1993 (A/New York/762/1993(H3N2))
6 CY012272 1994 (A/New York/729/1994(H3N2))

accession contains the Genbank accession numbers, which are unique se-
quence identifiers; year is a year of collection of the isolates; misc contains
other possibly useful information. Before going further, we check that iso-
lates are identical in both files (accession number are used as labels for the
sequences):

> dim(dna)

[1] 80 1701

> dim(annot)

[1] 80 3

> all(annot$accession == rownames(dna))

[1] TRUE

> table(annot$year)

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Good! The data we will analyse are 80 isolates (5 per year) typed for the
same 1701 nucleotides.

2 Distance-based phylogenies

Distance-based phylogenetic reconstruction consits in i) computing pairwise
genetic distances between individuals (here, isolates), ii) representing these
distances using a tree, and iii) evaluating the relevance of this representation.

2.1 Computing genetic distances

We first compute genetic distances using ape’s dist.dna, which proposes
no less than 15 different genetic distances (see ?dist.dna for details). Here,
we use Tamura and Nei 1993’s model [7] which allows for different rates of
transitions and transversions, heterogeneous base frequencies, and between-
site variation of the substitution rate.

> D <- dist.dna(dna, model = "TN93")
> class(D)

5

[1] "dist"

> length(D)

[1] 3160

D is an object of class dist which contains the distances between every pairs
of sequences.

Now that genetic distances between isolates have been computed, we
need to visualize this information. There are n(n − 1)/2 distances for n
sequences, and most of the time summarising this information is not entirely
trivial. The simplest approach is plotting directly the matrix of pairwise
distances:

> temp <- as.data.frame(as.matrix(D))
> table.paint(temp, cleg = 0, clabel.row = 0.5, clabel.col = 0.5)

CY013200
CY013781
CY012128
CY013613
CY012160
CY012272
CY010988
CY012288
CY012568
CY013016
CY012480
CY010748
CY011528
CY017291
CY012504
CY009476
CY010028
CY011128
CY010036
CY011424
CY006259
CY006243
CY006267
CY006235
CY006627
CY006787
CY006563
CY002384
CY008964
CY006595
CY001453
CY001413
CY001704
CY001616
CY003785
CY000737
CY001365
CY003272
CY000705
CY000657
CY002816
CY000584
CY001720
CY000185
CY002328
CY000297
CY003096
CY000545
CY000289
CY001152
CY000105
CY002104
CY001648
CY000353
CY001552
CY019245
CY021989
CY003336
CY003664
CY002432
CY003640
CY019301
CY019285
CY006155
CY034116
EF554795
CY019859
EU100713
CY019843
CY014159
EU199369
EU199254
CY031555
EU516036
EU516212
FJ549055

EU779498
EU779500
CY035190
EU852005

C
Y

01
32

00
C

Y
01

37
81

C
Y

01
21

28
C

Y
01

36
13

C
Y

01
21

60
C

Y
01

22
72

C
Y

01
09

88
C

Y
01

22
88

C
Y

01
25

68
C

Y
01

30
16

C
Y

01
24

80
C

Y
01

07
48

C
Y

01
15

28
C

Y
01

72
91

C
Y

01
25

04
C

Y
00

94
76

C
Y

01
00

28
C

Y
01

11
28

C
Y

01
00

36
C

Y
01

14
24

C
Y

00
62

59
C

Y
00

62
43

C
Y

00
62

67
C

Y
00

62
35

C
Y

00
66

27
C

Y
00

67
87

C
Y

00
65

63
C

Y
00

23
84

C
Y

00
89

64
C

Y
00

65
95

C
Y

00
14

53
C

Y
00

14
13

C
Y

00
17

04
C

Y
00

16
16

C
Y

00
37

85
C

Y
00

07
37

C
Y

00
13

65
C

Y
00

32
72

C
Y

00
07

05
C

Y
00

06
57

C
Y

00
28

16
C

Y
00

05
84

C
Y

00
17

20
C

Y
00

01
85

C
Y

00
23

28
C

Y
00

02
97

C
Y

00
30

96
C

Y
00

05
45

C
Y

00
02

89
C

Y
00

11
52

C
Y

00
01

05
C

Y
00

21
04

C
Y

00
16

48
C

Y
00

03
53

C
Y

00
15

52
C

Y
01

92
45

C
Y

02
19

89
C

Y
00

33
36

C
Y

00
36

64
C

Y
00

24
32

C
Y

00
36

40
C

Y
01

93
01

C
Y

01
92

85
C

Y
00

61
55

C
Y

03
41

16
E

F
55

47
95

C
Y

01
98

59
E

U
10

07
13

C
Y

01
98

43
C

Y
01

41
59

E
U

19
93

69
E

U
19

92
54

C
Y

03
15

55
E

U
51

60
36

E
U

51
62

12
F

J5
49

05
5

E
U

77
94

98
E

U
77

95
00

C
Y

03
51

90
E

U
85

20
05

Darker shades of grey represent greater distances. Note that to use image

to produce similar plots, data need to be transformed first; for instance:

6

> temp <- t(as.matrix(D))
> temp <- temp[, ncol(temp):1]

> par(mar = c(1, 5, 5, 1))
> image(x = 1:80, y = 1:80, temp, col = rev(heat.colors(100)),
+ xaxt = "n", yaxt = "n", xlab = "", ylab = "")
> axis(side = 2, at = 1:80, lab = rownames(dna), las = 2, cex.axis = 0.5)
> axis(side = 3, at = 1:80, lab = rownames(dna), las = 3, cex.axis = 0.5)

CY013200
CY013781
CY012128
CY013613
CY012160
CY012272
CY010988
CY012288
CY012568
CY013016
CY012480
CY010748
CY011528
CY017291
CY012504
CY009476
CY010028
CY011128
CY010036
CY011424
CY006259
CY006243
CY006267
CY006235
CY006627
CY006787
CY006563
CY002384
CY008964
CY006595
CY001453
CY001413
CY001704
CY001616
CY003785
CY000737
CY001365
CY003272
CY000705
CY000657
CY002816
CY000584
CY001720
CY000185
CY002328
CY000297
CY003096
CY000545
CY000289
CY001152
CY000105
CY002104
CY001648
CY000353
CY001552
CY019245
CY021989
CY003336
CY003664
CY002432
CY003640
CY019301
CY019285
CY006155
CY034116
EF554795
CY019859
EU100713
CY019843
CY014159
EU199369
EU199254
CY031555
EU516036
EU516212
FJ549055

EU779498
EU779500
CY035190
EU852005

C
Y

01
32

00
C

Y
01

37
81

C
Y

01
21

28
C

Y
01

36
13

C
Y

01
21

60
C

Y
01

22
72

C
Y

01
09

88
C

Y
01

22
88

C
Y

01
25

68
C

Y
01

30
16

C
Y

01
24

80
C

Y
01

07
48

C
Y

01
15

28
C

Y
01

72
91

C
Y

01
25

04
C

Y
00

94
76

C
Y

01
00

28
C

Y
01

11
28

C
Y

01
00

36
C

Y
01

14
24

C
Y

00
62

59
C

Y
00

62
43

C
Y

00
62

67
C

Y
00

62
35

C
Y

00
66

27
C

Y
00

67
87

C
Y

00
65

63
C

Y
00

23
84

C
Y

00
89

64
C

Y
00

65
95

C
Y

00
14

53
C

Y
00

14
13

C
Y

00
17

04
C

Y
00

16
16

C
Y

00
37

85
C

Y
00

07
37

C
Y

00
13

65
C

Y
00

32
72

C
Y

00
07

05
C

Y
00

06
57

C
Y

00
28

16
C

Y
00

05
84

C
Y

00
17

20
C

Y
00

01
85

C
Y

00
23

28
C

Y
00

02
97

C
Y

00
30

96
C

Y
00

05
45

C
Y

00
02

89
C

Y
00

11
52

C
Y

00
01

05
C

Y
00

21
04

C
Y

00
16

48
C

Y
00

03
53

C
Y

00
15

52
C

Y
01

92
45

C
Y

02
19

89
C

Y
00

33
36

C
Y

00
36

64
C

Y
00

24
32

C
Y

00
36

40
C

Y
01

93
01

C
Y

01
92

85
C

Y
00

61
55

C
Y

03
41

16
E

F
55

47
95

C
Y

01
98

59
E

U
10

07
13

C
Y

01
98

43
C

Y
01

41
59

E
U

19
93

69
E

U
19

92
54

C
Y

03
15

55
E

U
51

60
36

E
U

51
62

12
F

J5
49

05
5

E
U

77
94

98
E

U
77

95
00

C
Y

03
51

90
E

U
85

20
05

(see image.plot in the package fields for similar plots with a legend).
Since the data are roughly ordered by year, we can already see some

genetic structure appearing, but this is admittedly not the most satisfying or
informative approach, and tells us little about the evolutionary relationships
between our isolates.

2.2 Building trees

We use trees to get a better representation of the genetic distances between
individuals. It is important, however, to bear in mind that the obtained

7

trees are not necessarily efficient representations of the original distances,
and information can —and likely will— be lost in the process.

A wide array of algorithms for constructing trees from a distance matrix
are available in , including:

? nj (ape package): the classical Neighbor-Joining algorithm.

? bionj (ape): an improved version of Neighbor-Joining.

? fastme.bal and fastme.ols (ape): minimum evolution algorithms.

? hclust (stats): classical hierarchical clustering algorithms including
single linkage, complete linkage, UPGMA, and others.

Here, we go for the standard:

> tre <- nj(D)
> class(tre)

[1] "phylo"

> tre

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, CY012128, CY013613, CY012160, CY012272, ...

Unrooted; includes branch lengths.

> plot(tre, cex = 0.6)
> title("A simple NJ tree")

8

CY013200
CY013781

CY012128

CY013613
CY012160

CY012272CY010988

CY012288

CY012568

CY013016

CY012480

CY010748

CY011528CY017291

CY012504

CY009476
CY010028

CY011128CY010036

CY011424

CY006259

CY006243

CY006267

CY006235
CY006627

CY006787CY006563

CY002384

CY008964

CY006595

CY001453
CY001413

CY001704

CY001616

CY003785

CY000737
CY001365CY003272

CY000705

CY000657

CY002816

CY000584

CY001720
CY000185

CY002328

CY000297

CY003096
CY000545

CY000289CY001152

CY000105
CY002104CY001648

CY000353

CY001552

CY019245CY021989

CY003336
CY003664

CY002432

CY003640

CY019301
CY019285

CY006155

CY034116

EF554795

CY019859

EU100713CY019843

CY014159

EU199369
EU199254CY031555

EU516036
EU516212FJ549055
EU779498

EU779500
CY035190EU852005

A simple NJ tree

Trees created in the package ape are instances of the class phylo. See
?read.tree for a description of this class.

2.3 Plotting trees

The plotting method offers many possibilities for plotting trees; see ?plot.phylo
for more details. Functions such as tiplabels, nodelabels, edgelabels
and axisPhylo can also be useful to annotate trees. For instance, we may
simply represent years using different colors (red=ancient; blue=recent):

> plot(tre, show.tip = FALSE)
> title("Unrooted NJ tree")
> myPal <- colorRampPalette(c("red", "yellow", "green", "blue"))
> tiplabels(annot$year, bg = num2col(annot$year, col.pal = myPal),
+ cex = 0.5)
> temp <- pretty(1993:2008, 5)
> legend("bottomright", fill = num2col(temp, col.pal = myPal),
+ leg = temp, ncol = 2)

9

Unrooted NJ tree

1993
1993

1993

1993
1993

1994
1994

1994

1994

1994

1995

1995

1995
1995

1995

1996
1996

1996
1996

1996

1997

1997

1997

1997
1997

1998
1998

1998

1998

1998

1999
1999

1999

1999

1999

2000
2000

2000
2000

2000

2001

2001

2001
2001

2001

2002

2002
2002

2002
2002

2003
2003

2003
2003

2003

2004
2004

2004
2004

2004

2005

2005
2005

2005

2005

2006

2006

2006
2006

2006

2007
2007
2007

2007
2007

2008
2008

2008
2008

2008

1990
1995
2000

2005
2010

This illustrates a common mistake when interpreting phylogenetic trees. In
the above figures, we tend to assume that the left-side of the phylogeny is
‘ancestral’, while the right-side is ‘recent’. This is wrong —as suggested by
the colors— unless the phylogeny is actually rooted, i.e. some external taxa
has been used to define what is the most ‘ancient’ split in the tree. The
present tree is not rooted, and should be better represented as such:

> is.rooted(tre)

[1] FALSE

> plot(tre, type = "unrooted", show.tip = FALSE)
> title("Unrooted NJ tree")
> tiplabels(annot$year, bg = num2col(annot$year, col.pal = myPal),
+ cex = 0.5)

10

Unrooted NJ tree

19931993

1993

19931993
1994
1994
199419941994

1995

1995

19951995

1995

1996

1996

19961996

1996

19971997199719971997
19981998

1998

1998
1998

1999

1999
1999

1999

19992000
2000200020002000

2001
2001

2001200120012002
2002

200220022002

2003200320032003

2003

20042004
20042004

2004

2005

200520052005

2005
20062006

2006

2006
2006

2007200720072007200720082008
200820082008

In the present case, a sensible rooting would be any of the most ancient
isolates (from 1993). We can take the first one:

> head(annot)

accession year misc
1 CY013200 1993 (A/New York/783/1993(H3N2))
2 CY013781 1993 (A/New York/802/1993(H3N2))
3 CY012128 1993 (A/New York/758/1993(H3N2))
4 CY013613 1993 (A/New York/766/1993(H3N2))
5 CY012160 1993 (A/New York/762/1993(H3N2))
6 CY012272 1994 (A/New York/729/1994(H3N2))

> tre2 <- root(tre, out = 1)

and plot the result:

> plot(tre2, show.tip = FALSE, edge.width = 2)
> title("Rooted NJ tree")
> tiplabels(annot$year, bg = transp(num2col(annot$year, col.pal = myPal),
+ 0.7), cex = 0.5, fg = "transparent")
> axisPhylo()
> temp <- pretty(1993:2008, 5)
> legend("topright", fill = transp(num2col(temp, col.pal = myPal),
+ 0.7), leg = temp, ncol = 2)

11

Rooted NJ tree

1993
1993

1993

1993
1993

1994
1994

1994

1994

1994

1995

1995

1995
1995

1995
1996

1996
1996

1996
1996

1997

1997
1997

1997

1997
1998

1998

1998

1998

1998

1999
1999

1999

1999

1999

2000
2000

2000
2000

2000

2001

2001

2001
2001

2001

2002

2002
2002

2002
2002

2003
2003

2003
2003

2003

2004
2004

2004
2004

2004

2005

2005
2005

2005

2005

2006

2006

2006
2006

2006

2007
2007
2007

2007
2007
2008
2008

2008
2008

2008

0.06 0.04 0.02 0

1990
1995
2000

2005
2010

Now, the horizontal axis can globally be interpreted as temporal evolution;
however, it is not uncommon that isolates from consecutive years cluster
together, suggesting that the turnover of strains from one season to another
is somehow smooth.

2.4 Assessing the quality of a phylogeny

Many genetic distances and hierarchical clustering algorithms can be used
to build trees; not all of them are appropriate for a given dataset. Genetic
distances rely on hypotheses about the evolution of DNA sequences which
should be taken into account. For instance, the mere proportion of differ-
ing nucleotides between sequences (model=’raw’ in dist.dna) is easy to
interprete, but only makes sense if all substitutions are equally frequent. In
practice, simple yet flexible models such as that of Tamura and Nei (1993,
[7]) are probably fair choices.

Once one has chosen an appropriate genetic distance and built a tree us-
ing this distance, an essential yet most often overlooked question is whether

12

this tree actually is a good representation of the original distance matrix.
This is easily investigated using simple biplots and correlation indices. The
function cophenetic is used to compute distances between the tips of the
tree. Note that more distances are available in the adephylo package (see
distTips function).

> x <- as.vector(D)
> y <- as.vector(as.dist(cophenetic(tre2)))
> plot(x, y, xlab = "original distance", ylab = "distance in the tree",
+ main = "Is NJ appropriate?", pch = 20, col = transp("black",
+ 0.1), cex = 3)
> abline(lm(y ~ x), col = "red")
> cor(x, y)^2

[1] 0.9975154

0.00 0.02 0.04 0.06 0.08

0.
00

0.
02

0.
04

0.
06

0.
08

Is NJ appropriate?

original distance

di
st

an
ce

 in
 th

e
tr

ee

As it turns out, our Neighbor-Joining tree (tre2) is a very good representa-
tion of the chosen genetic distances. Things would have been different had
we chosen, for instance, UPGMA:

> tre3 <- as.phylo(hclust(D, method = "average"))
> y <- as.vector(as.dist(cophenetic(tre3)))
> plot(x, y, xlab = "original distance", ylab = "distance in the tree",
+ main = "Is UPGMA appropriate?", pch = 20, col = transp("black",
+ 0.1), cex = 3)
> abline(lm(y ~ x), col = "red")
> cor(x, y)^2

13

[1] 0.7393009

0.00 0.02 0.04 0.06 0.08

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Is UPGMA appropriate?

original distance

di
st

an
ce

 in
 th

e
tr

ee

In this case, UPGMA is a poor choice. Why is this? A first explanation is
that UPGMA forces ultrametry (all the tips are equidistant to the root):

> plot(tre3, cex = 0.5)
> title("UPGMA tree")

14

CY013200
CY013781

CY012128

CY013613
CY012160

CY012272

CY010988

CY012288

CY012568
CY013016

CY012480
CY010748
CY011528
CY017291

CY012504

CY009476

CY010028

CY011128
CY010036
CY011424

CY006259
CY006243
CY006267

CY006235

CY006627

CY006787
CY006563

CY002384

CY008964

CY006595

CY001453

CY001413

CY001704

CY001616

CY003785
CY000737

CY001365

CY003272
CY000705

CY000657

CY002816

CY000584

CY001720
CY000185
CY002328

CY000297

CY003096

CY000545

CY000289
CY001152

CY000105
CY002104
CY001648

CY000353

CY001552

CY019245
CY021989

CY003336

CY003664

CY002432

CY003640

CY019301

CY019285

CY006155

CY034116
EF554795

CY019859

EU100713
CY019843

CY014159

EU199369
EU199254CY031555

EU516036
EU516212
FJ549055
EU779498

EU779500CY035190
EU852005

UPGMA tree

The underlying assumption is that all lineages have undergone the same
amount of evolution, which is obviously not the case in seasonal influenza
sampled over 16 years.

Another validation of phylogenetic trees, much more commonly used, in
bootstrap. Bootstrapping a phylogeny consists in sampling the nucleotides
with replacement, rebuilding the phylogeny, and checking if the original
nodes are present in the bootstrapped trees. In practice, this procedure
is iterated a large number of times (e.g. 100, 1000), depending on how
computer-intensive the phylogenetic reconstruction is. The underlying idea
is to assess the variability in the obtained topology which results from con-
ducting the analyses on a random sample the genome. Note that the assump-
tion that the analysed sequences represent a random sample of the genome
is often dubious. For instance, this is not the case in our toy dataset, since
HA segment has a different rate of evolution and experiences different selec-
tive pressures from other segments of the influenza genome. We nonetheless
illustrate the procedure, implemented by boot.phylo:

15

> myBoots <- boot.phylo(tre2, dna, function(e) root(nj(dist.dna(e,
+ model = "TN93")), 1))
> myBoots

[1] 100 23 55 65 79 100 90 100 97 100 100 93 100 64 42 98 45 66 55
[20] 34 25 59 100 73 21 56 100 36 45 62 45 26 47 71 94 82 100 100
[39] 89 87 100 38 54 94 55 56 74 97 68 100 38 51 41 94 100 45 54
[58] 31 52 60 73 93 58 100 89 53 37 29 23 89 100 100 72 92 39 31
[77] 80 72

The output gives the number of times each node was identified in boot-
strapped analyses (the order is the same as in the original object). It is
easily represented using nodelabels:

> plot(tre2, show.tip = FALSE, edge.width = 2)
> title("NJ tree + bootstrap values")
> tiplabels(frame = "none", pch = 20, col = transp(num2col(annot$year,
+ col.pal = myPal), 0.7), cex = 3, fg = "transparent")
> axisPhylo()
> temp <- pretty(1993:2008, 5)
> legend("topright", fill = transp(num2col(temp, col.pal = myPal),
+ 0.7), leg = temp, ncol = 2)
> nodelabels(myBoots, cex = 0.6)

NJ tree + bootstrap values

0.06 0.04 0.02 0

1990
1995
2000

2005
2010

100

23

55

65

79

100

90

100

97 100

100

93

100

64

42 98

45

66553425

59

100

73

21

56

100
36
45
62
45

2647
71

94
82

100

1008987

100

38
54
94555674

97
68

100
38
51

41

94

100
45
54
3152
60
73

9358

100

89
53372923

89
100

10072

923931

80
72

16

As we can see, some nodes are very poorly supported. One common prac-
tice is to collapse these nodes into multifurcations. There is no dedicated
method for this in ape, but one simple workaround consists in setting the
corresponding edges to a length of zero (here, with bootstrap < 70%), and
then collapsing the small branches:

> temp <- tre2
> N <- length(tre2$tip.label)
> toCollapse <- match(which(myBoots < 70) + N, temp$edge[, 2])
> temp$edge.length[toCollapse] <- 0
> tre3 <- di2multi(temp, tol = 1e-05)

The new tree might be slightly less informative, but more robust than
the previous one:

> plot(tre3, show.tip = FALSE, edge.width = 2)
> title("NJ tree after collapsing weak nodes")
> tiplabels(annot$year, bg = transp(num2col(annot$year, col.pal = myPal),
+ 0.7), cex = 0.5, fg = "transparent")
> axisPhylo()
> temp <- pretty(1993:2008, 5)
> legend("topright", fill = transp(num2col(temp, col.pal = myPal),
+ 0.7), leg = temp, ncol = 2)

NJ tree after collapsing weak nodes

1993
1993

1993

1993
1993

1994
1994

1994

1994

1994

1995

1995

1995
1995

1995
1996

1996
1996

1996
1996

1997

1997
1997

1997

1997
1998

1998

1998

1998

1998

1999
1999

1999

1999

1999

2000
2000

2000
2000

2000

2001

2001

2001
2001

2001

2002

2002
2002

2002
2002

2003
2003

2003
2003

2003

2004
2004

2004
2004

2004

2005

2005
2005

2005

2005

2006

2006

2006
2006

2006

2007
2007
2007

2007
2007
2008
2008

2008
2008

2008

0.06 0.04 0.02 0

1990
1995
2000

2005
2010

17

3 Maximum parsimony phylogenies

3.1 Introduction

Phylogenetic reconstruction based on parsimony seeks trees which minimize
the total number of changes (substitutions) from ancestors to descendents.
While a number of criticisms can be made to this approach, it is a simple
way to infer phylogenies for data which display moderate to low divergence
(i.e. most taxa differ from each other by only a few nucleotides, and the
overall substitution rate is low).

In practice, there is often no way to perform an exhaustive search amongst
all possible trees to find the most parsimonious one, and heuristic algorithms
are used to browse the space of possible trees. The strategy is fairly simple:
i) initialize the algorithm using a tree and ii) make small changes to the
tree and retain those leading to better parsimony, until the parsimony score
stops improving.

3.2 Implementation

Parsimony-based phylogenetic reconstruction is implemented in the package
phangorn. It requires a tree (in ape’s format, i.e. a phylo object) and the
original DNA sequences in phangorn’s own format, phyDat. We convert the
data and generate a tree to initialize the method:

> dna2 <- as.phyDat(dna)
> class(dna2)

[1] "phyDat"

> dna2

80 sequences with 1701 character and 269 different site patterns.
The states are a c g t

> tre.ini <- nj(dist.dna(dna, model = "raw"))
> tre.ini

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, CY012128, CY013613, CY012160, CY012272, ...

Unrooted; includes branch lengths.

The parsimony of a given tree is given by:

> parsimony(tre.ini, dna2)

[1] 422

18

Then, optimization of the parsimony is achieved by:

> tre.pars <- optim.parsimony(tre.ini, dna2)

Final p-score 420 after 2 nni operations

> tre.pars

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, CY012128, CY013613, CY012160, CY012272, ...

Unrooted; no branch lengths.

Here, the final result is very close to the original tree. The obtained
tree is unrooted and does not have branch lengths, but it can be plotted as
previously:

> plot(tre.pars, type = "unr", show.tip = FALSE, edge.width = 2)
> title("Maximum-parsimony tree")
> tiplabels(annot$year, bg = transp(num2col(annot$year, col.pal = myPal),
+ 0.7), cex = 0.5, fg = "transparent")
> temp <- pretty(1993:2008, 5)
> legend("topright", fill = transp(num2col(temp, col.pal = myPal),
+ 0.7), leg = temp, ncol = 2, bg = transp("white"))

19

Maximum−parsimony tree

1993

1993

1993

1993

1993

19941994

1994

1994

1994

1995

1995

1995

1995

1995 1996

1996

1996

1996

1996

199719971997

1997

1997

1998
1998

1998

1998

1998 1999

1999
1999

1999

1999

2000

2000
2000

2000

2000

2001

2001

2001

20012001

2002
2002

2002

20022002

2003

20032003

20032003

20042004
2004

2004 20042005 2005
2005
2005

2005

20062006

2006

20062006

2007

20072007

2007200720082008

2008

20082008

1990
1995
2000

2005
2010

In this case, parsimony gives fairly consistent results with other ap-
proaches, which is only to be expected whenever the amount of divergence
between the sequences is fairly low, as is the case in our data.

4 Maximum likelihood phylogenies

4.1 Introduction

Maximum likelihood phylogenetic reconstruction is somehow similar to par-
simony methods in that it browses a space of possible tree topologies looking
for the ’best’ tree. However, it offers far more flexibility in that any model of
sequence evolution can be taken into account. Given one model of evolution,
one can compute the likelihood of a given tree, and therefore optimization
procedures can be used to infer both the most likely tree topology and model
parameters.

As in distance-based methods, model-based phylogenetic reconstruction
requires thinking about which parameters should be included in a model.

20

Usually, all possible substitutions are allowed to have different rates, and
the substitution rate is allowed to vary across sites according to a gamma
distribution. We refer to this model as GTR + Γ(4) (GTR: global reversible
time). More information about phylogenetic models can be found in [3].

4.2 Sorting out the data

Likelihood-based phylogenetic reconstruction is implemented in the package
phangorn. Like parsimony-based approaches, it requires a tree (in ape’s
format, i.e. a phylo object) and the original DNA sequences in phangorn’s
own format, phyDat. As in the previous section, we convert the data and
generate a tree to initialize the method:

> dna2 <- as.phyDat(dna)
> class(dna2)

[1] "phyDat"

> dna2

80 sequences with 1701 character and 269 different site patterns.
The states are a c g t

> tre.ini <- nj(dist.dna(dna, model = "TN93"))
> tre.ini

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, CY012128, CY013613, CY012160, CY012272, ...

Unrooted; includes branch lengths.

To initialize the optimization procedure, we need an initial fit for the
model chosen. This is computed using pml:

> pml(tre.ini, dna2, k = 4)

loglikelihood: NaN

unconstrained loglikelihood: -4736.539
Discrete gamma model
Number of rate categories: 4
Shape parameter: 1

Rate matrix:
a c g t

a 0 1 1 1
c 1 0 1 1
g 1 1 0 1
t 1 1 1 0

Base frequencies:
0.25 0.25 0.25 0.25

21

The computed likelihood is NA, which is obviously a bit of a problem, but
a likely frequent issue. This issue is due to missing data (NAs) in the orig-
inal dataset. We therefore need to remove missing data before going further.

We first retrieve the position of missing data, i.e. any data differing from
’a’, ’g’,’c’ and ’t’.

> na.posi <- which(apply(as.character(dna), 2, function(e) any(!e %in%
+ c("a", "t", "g", "c"))))

We can easily plot the number of missing data for each site:

> temp <- apply(as.character(dna), 2, function(e) sum(!e %in% c("a",
+ "t", "g", "c")))
> plot(temp, type = "l", col = "blue", xlab = "Position in HA segment",
+ ylab = "Number of NAs")

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

Position in HA segment

N
um

be
r

of
 N

A
s

The begining of the alignment is guilty for most of the missing data,
which was only to be expected (extremities of the sequences have variable
length).

> dna3 <- dna[, -na.posi]
> dna3

80 DNA sequences in binary format stored in a matrix.

All sequences of same length: 1596

Labels: CY013200 CY013781 CY012128 CY013613 CY012160 CY012272 ...

22

Base composition:
a c g t

0.340 0.197 0.226 0.238

> table(as.character(dna3))

a c g t
43402 25104 28828 30346

> dna4 <- as.phyDat(dna3)

The object dna3 is an alignment of all sequences excluding missing data;
dna4 is its conversion in phyDat format.

4.3 Getting a ML tree

We recompute the likelihood of the initial tree using pml:

> dna4 <- as.phyDat(dna3)
> tre.ini <- nj(dist.dna(dna3, model = "TN93"))
> fit.ini <- pml(tre.ini, dna4, k = 4)
> fit.ini

loglikelihood: -5183.648

unconstrained loglikelihood: -4043.367
Discrete gamma model
Number of rate categories: 4
Shape parameter: 1

Rate matrix:
a c g t

a 0 1 1 1
c 1 0 1 1
g 1 1 0 1
t 1 1 1 0

Base frequencies:
0.25 0.25 0.25 0.25

We now have all the information needed for seeking a maximum likelihood
solution using optim.pml; we specify that we want to optimize tree topol-
ogy (optNni=TRUE), base frequencies (optBf=TRUE), the rates of all possible
subtitutions (optQ=TRUE), and use a gamma distribution to model variation
in the substitution rates across sites (optGamma=TRUE):

> fit <- optim.pml(fit.ini, optNni = TRUE, optBf = TRUE, optQ = TRUE,
+ optGamma = TRUE)

> fit

23

loglikelihood: -4915.914

unconstrained loglikelihood: -4043.367
Discrete gamma model
Number of rate categories: 4
Shape parameter: 0.2843749

Rate matrix:
a c g t

a 0.000000 2.3831923 8.2953873 0.855505
c 2.383192 0.0000000 0.1486215 10.076469
g 8.295387 0.1486215 0.0000000 1.000000
t 0.855505 10.0764688 1.0000000 0.000000

Base frequencies:
0.3416519 0.1953526 0.2242948 0.2387007

> class(fit)

[1] "pml"

> names(fit)

[1] "logLik" "inv" "k" "shape" "Q" "bf" "rate"
[8] "siteLik" "weight" "g" "w" "eig" "data" "model"
[15] "INV" "ll.0" "tree" "lv" "call" "df" "wMix"
[22] "llMix"

fit is a list with class pml storing various useful information about the
model parameters and the optimal tree (stored in fit$tree). In this ex-
ample, we can see from the output that transitions (a ↔ g and c ↔ t) are
much more frequent than transversions (other changes), which is consistent
with biological expectations (transversions induce more drastic changes of
chemical properties of the DNA and are more prone to purifying selection).
We can verify that the optimized tree is indeed better than the original one
using standard likelihood ration tests and AIC:

> anova(fit.ini, fit)

Likelihood Ratio Test Table
Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -5183.6 158
2 -4915.9 166 8 535.47 < 2.2e-16

> AIC(fit.ini)

[1] 10683.3

> AIC(fit)

[1] 10163.83

Yes, the new tree is actually better than the initial one.

We can extract and plot the tree as we did before with other methods:

24

> tre4 <- root(fit$tree, 1)
> plot(tre4, show.tip = FALSE, edge.width = 2)
> title("Maximum-likelihood tree")
> tiplabels(annot$year, bg = transp(num2col(annot$year, col.pal = myPal),
+ 0.7), cex = 0.5, fg = "transparent")
> axisPhylo()
> temp <- pretty(1993:2008, 5)
> legend("topright", fill = transp(num2col(temp, col.pal = myPal),
+ 0.7), leg = temp, ncol = 2)

Maximum−likelihood tree

1993

1993

1993

1993

1993

1994
1994

1994

1994

1994

1995

1995

1995
1995

1995

1996

1996

1996
1996

1996

1997
1997

1997

1997
1997

1998
1998

1998

1998

1998

1999
1999

1999

1999

1999

2000
2000

2000
2000

2000

2001

2001

2001

2001
2001

2002

2002
2002

2002

2002

2003
2003

2003
2003

2003

2004
2004

2004

2004

2004

2005

2005
2005

2005

2005

2006
2006

2006

2006

2006

2007
2007
2007

2007
2007
2008
2008

2008
2008

2008

0.08 0.06 0.04 0.02 0

1990
1995
2000

2005
2010

This tree is statistically better than the original NJ tree based on Tamura
and Nei’s distance [7]. However, we can note that it is remarkably similar
to the ’robust’ version of this distance-based tree (after collapsing weakly
supported nodes). The structure of this dataset is fairly simple, and all
methods give fairly consistent results. In practice, different methods can
lead to different interpretations, and it is probably worth exploring different
approaches before drawing conclusions on the data.

25

References

[1] S. Dray and A.-B. Dufour. The ade4 package: implementing the duality
diagram for ecologists. Journal of Statistical Software, 22(4):1–20, 2007.

[2] T. Jombart. adegenet: a R package for the multivariate analysis of
genetic markers. Bioinformatics, 24:1403–1405, 2008.

[3] Scot A Kelchner and Michael A Thomas. Model use in phylogenetics:
nine key questions. Trends Ecol Evol, 22(2):87–94, Feb 2007.

[4] E. Paradis, J. Claude, and K. Strimmer. APE: analyses of phylogenetics
and evolution in R language. Bioinformatics, 20:289–290, 2004.

[5] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2009. ISBN 3-900051-07-0.

[6] Klaus Peter Schliep. phangorn: phylogenetic analysis in r. Bioinformat-
ics, 27(4):592–593, Feb 2011.

[7] K. Tamura and M. Nei. Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial dna in humans and
chimpanzees. Mol Biol Evol, 10(3):512–526, May 1993.

26

	Introduction
	Required packages
	The data

	Distance-based phylogenies
	Computing genetic distances
	Building trees
	Plotting trees
	Assessing the quality of a phylogeny

	Maximum parsimony phylogenies
	Introduction
	Implementation

	Maximum likelihood phylogenies
	Introduction
	Sorting out the data
	Getting a ML tree

