Applications to genetic data 000000000

Multivariate analysis of genetic data — an introduction —

Thibaut Jombart, Marie-Pauline Beugin

MRC Centre for Outbreak Analysis and Modelling Imperial College London

Genetic data analysis with PR~Statistics, Millport Field Station 17 Aug 2016

Applications to genetic data 000000000

Outline

Multivariate analysis in a nutshell

Applications to genetic data

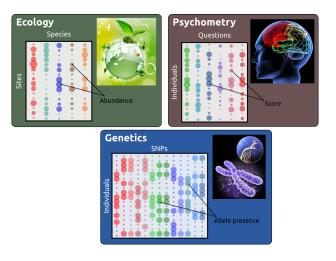
Applications to genetic data 000000000

Outline

Multivariate analysis in a nutshell

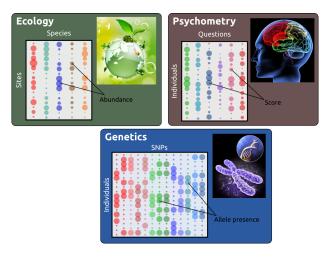
Applications to genetic data

Multivariate data: some examples



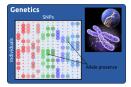
Association between individuals? Correlations between variables?

Multivariate data: some examples

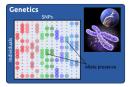


Association between individuals? Correlations between variables?

Multivariate analysis to summarize diversity



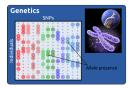
Multivariate analysis to summarize diversity



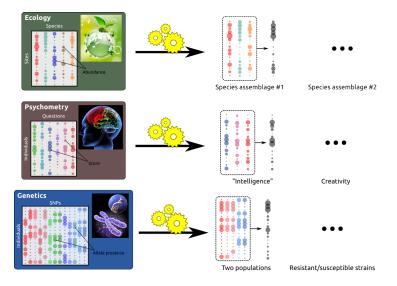
Species assemblage #2

Multivariate analysis to summarize diversity

Creativity



Multivariate analysis to summarize diversity



Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

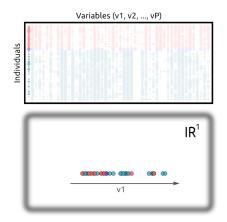
Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

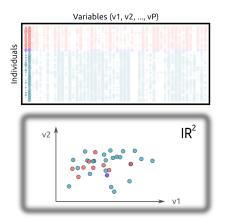
- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

1 dimension, 2 dimensions, P dimensions



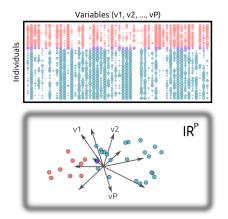
Need to find most informative directions in a P-dimensional space.

1 dimension, 2 dimensions, P dimensions



Need to find most informative directions in a *P*-dimensional space.

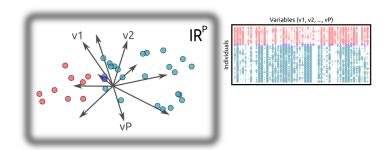
1 dimension, 2 dimensions, P dimensions



Need to find most informative directions in a *P*-dimensional space.

Applications to genetic data 000000000

Reducing P dimensions into 1

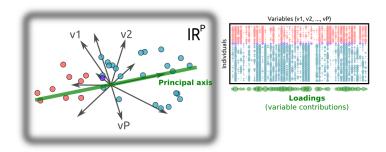


- $\mathbf{X} \in \mathbb{R}^{N imes P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^{P}$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^{P} u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component

 \rightarrow find **u** so that $\frac{1}{N} \|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.

Applications to genetic data 000000000

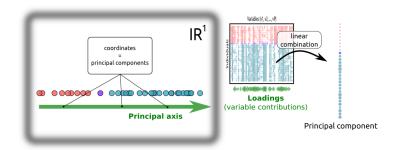
Reducing P dimensions into 1



- $\mathbf{X} \in \mathbb{R}^{N imes P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^P$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^P u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component

 \rightarrow find **u** so that $\frac{1}{N} \|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.

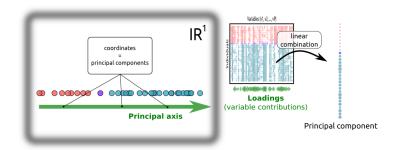
Reducing P dimensions into 1



- $\mathbf{X} \in \mathbb{R}^{N imes P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^{P}$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^{P} u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component

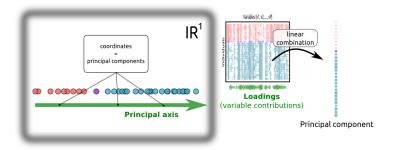
 \rightarrow find \mathbf{u} so that $\frac{1}{N} \| \mathbf{v} \|^2 = \mathsf{var}(\mathbf{v})$ is maximum.

Reducing P dimensions into 1

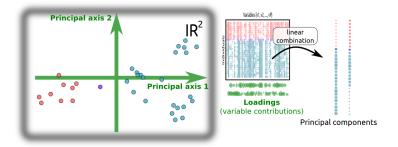


- $\mathbf{X} \in \mathbb{R}^{N imes P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^{P}$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^{P} u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component

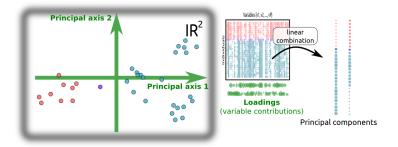
 \rightarrow find \mathbf{u} so that $\frac{1}{N} \| \mathbf{v} \|^2 = \mathsf{var}(\mathbf{v})$ is maximum.



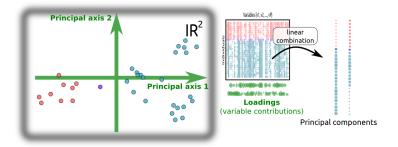
- \mathbf{u}_1 and \mathbf{v}_1 : 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2 \iff \operatorname{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0)$ \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} \|\mathbf{v}_2\|^2 = \operatorname{var}(\mathbf{v}_2)$ is maximum



- \mathbf{u}_1 and \mathbf{v}_1 : 1st principal axis and component
- u₂ and v₂: 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ ($\iff \operatorname{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0$) \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} ||\mathbf{v}_2||^2 = \operatorname{var}(\mathbf{v}_2)$ is maximum



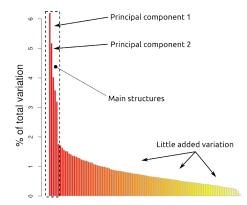
- u₁ and v₁: 1st principal axis and component
- u₂ and v₂: 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ (\iff cor($\mathbf{v}_1, \mathbf{v}_2$) = 0) \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} ||\mathbf{v}_2||^2 = var(\mathbf{v}_2)$ is maximum



- u₁ and v₁: 1st principal axis and component
- u₂ and v₂: 2nd principal axis and component
- $\begin{array}{l} \rightarrow \text{ constraint: } \mathbf{u}_1 \perp \mathbf{u}_2 \text{ (} \Longleftrightarrow \text{ cor}(\mathbf{v}_1,\mathbf{v}_2)=0\text{)} \\ \rightarrow \text{ find } \mathbf{u}_2 \text{ so that } \frac{1}{N} \|\mathbf{v}_2\|^2 = \text{var}(\mathbf{v}_2) \text{ is maximum} \end{array}$

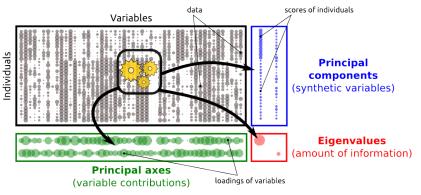
How many principal components to retain?

Choice based on "screeplot": barplot of eigenvalues



Retain only "significant" structures... but not trivial ones.

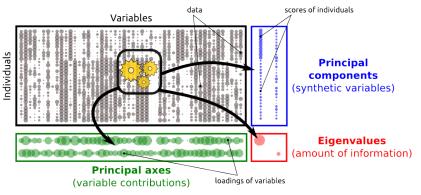
Outputs of multivariate analyses: an overview



Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

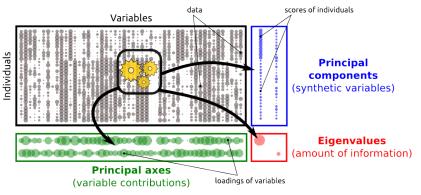
Outputs of multivariate analyses: an overview



Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

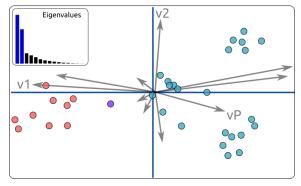
Outputs of multivariate analyses: an overview



Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

Usual summary of an analysis: the biplot



Biplot: principal components (points) + loadings (arrows)

- groups of individuals
- discriminating variables (longest arrows)
- magnitude of the structures

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

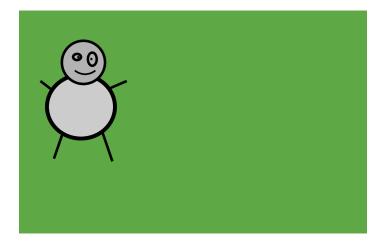
Applications to genetic data

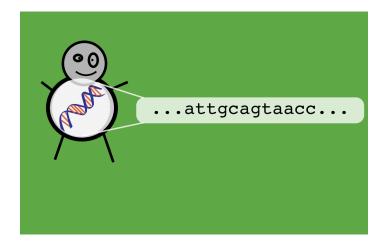
Outline

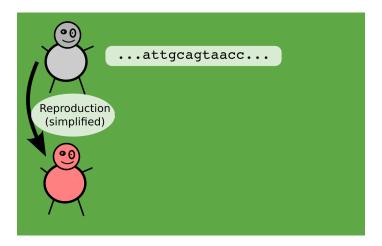
Multivariate analysis in a nutshell

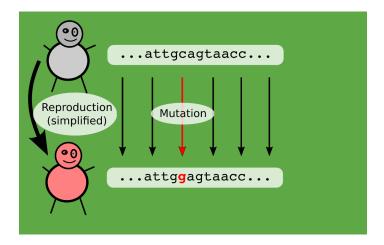
Applications to genetic data

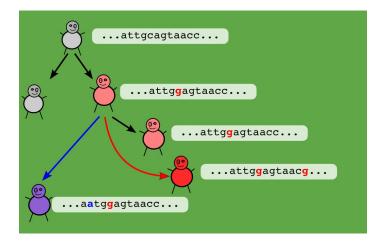
Applications to genetic data •00000000



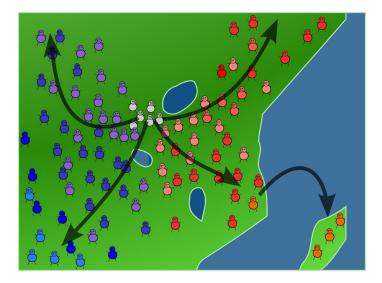




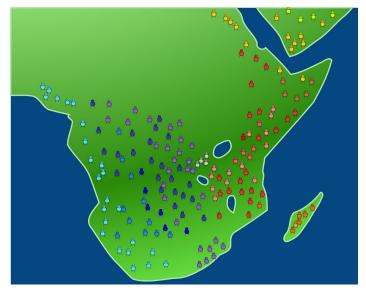




Applications to genetic data •00000000



Applications to genetic data •00000000

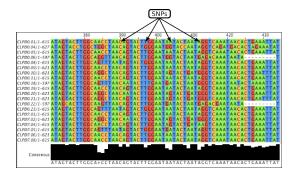


Applications to genetic data •00000000

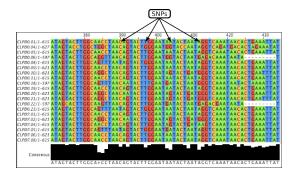
Applications to genetic data •000000000

From DNA sequences to patterns of biological diversity

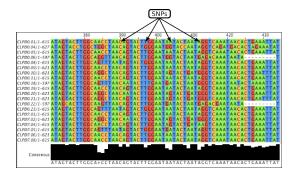
DNA sequences contain information about the spatio-temporal dynamics of biological populations



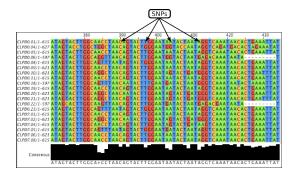
- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.



- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.



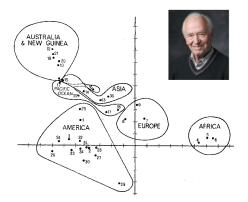
- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.



- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.

First application of multivariate analysis in genetics

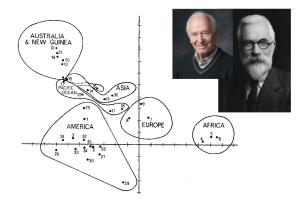
PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)



First 2 principal components separate populations into continents.

First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)

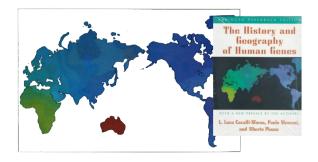


First 2 principal components separate populations into continents.

Applications: some examples

PCA of genetic data + colored maps of principal components

(Cavalli-Sforza et al. 1993, Science)



Signatures of Human expansion out-of-Africa.

Since then...

Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)

• ...

Applications to genetic data

Since then...

Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...
- review in Jombart et al. 2009, Heredity 102: 330-341

Applications to genetic data

In practice

Multivariate analysis of genetic data using Usual pipeline

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (*ade4/adegenet*)

Applications to genetic data

In practice

Multivariate analysis of genetic data using 🔍

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (*ade4/adegenet*)

Applications to genetic data 0000000000

In practice

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

Applications to genetic data 0000000000

In practice

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (*ade4/adegenet*)

Applications to genetic data 0000000000

In practice

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as counts/frequencies

Example using microsatellites: Raw data: Recoded data (allele counts):

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0	0	2	0	2
2	50/55	30/30	2	1	1	0	0	2
3	80/50	29/30	3	1	0	1	1	1
4	50/50	30/30	4	2	0	0	0	2
5	50/50	29/29	5	2	0	0	2	0

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as counts/frequencies

Example using microsatellites: Raw data: Recoded data (allele counts):

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0	0	2	0	2
2	50/55	30/30	2	1	1	0	0	2
3	80/50	29/30	3	1	0	1	1	1
4	50/50	30/30	4	2	0	0	0	2
5	50/50	29/29	5	2	0	0	2	0

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as counts/frequencies

Example using microsatellites:

Raw data: Recoded data (allele counts):

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0	0	2	0	2
2	50/55	30/30	2	1	1	0	0	2
З	80/50	29/30	3	1	0	1	1	1
4	50/50	30/30	4	2	0	0	0	2
5	50/50	29/29	5	2	0	0	2	0

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as counts/frequencies

Example using microsatellites: Raw data: Recoded data (allele counts):

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0	0	2	0	2
2	50/55	30/30	2	1	1	0	0	2
З	80/50	29/30	3	1	0	1	1	1
4	50/50	30/30	4	2	0	0	0	2
5	50/50	29/29	5	2	0	0	2	0

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation ightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation ightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation \rightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation \rightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation \rightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation \rightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Types of data:

- codominant markers (e.g. microsatellites) with any ploidy level \rightarrow allele counts
- dominant markers (e.g. RAPD) \rightarrow presence/absence
- nucleotide / amino-acids variation \rightarrow allele counts
- purely biallelic SNPs \rightarrow binary data (bits)

- software: GENETIX, Fstat, Genepop, STRUCTURE, PLINK
- data.frame of raw allelic data
- data.frame of allelic frequencies
- SNPs/amino-acids extracted from DNA/protein alignments

Applications to genetic data

(Almost) time to get your hands dirty!

And after lunch, the pdf of the practical is online: http://adegenet.r-forge.r-project.org/ or

 $\mathsf{Google} \rightarrow \mathsf{adegenet} \rightarrow \mathsf{documents} \rightarrow \text{``GDAR August 2016''}$