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Genetic data: introducing group data

alleles 

individual

markers

sum=1

• How to identify groups?

• How to explore group diversity?
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Hierarchical clustering: a variety of algorithms

• single linkage

• complete linkage

• UPGMA

• Ward

• ...
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Rationale

1. compute pairwise genetic distances D (or similarities)

2. group the closest pair(s) together

3. (optional) update D

4. return to 2) until no new group can be made
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Differences between algorithms

k

i j
Di,jg

D   =...k,g

• single linkage: Dk,g = min(Dk,i, Dk,j)

• complete linkage: Dk,g = max(Dk,i, Dk,j)

• UPGMA: Dk,g =
Dk,i+Dk,j

2
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Differences between algorithms
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K-means underlying model
ANOVA model:

total var. = (var. between groups) + (var. within groups)

variatibility 
between groups

variability 
within groups

individuals
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K-means rationale

Find groups which minimize within group var. (equally: maximize
between group var.).

In other words:
Identify a partition G = {g1, . . . , gk} solving:

arg min
G={g1,...,gk}

∑
k

∑
i∈gk

‖xi − µk‖2

with:

• xi ∈ Rp: vector of allele frequencies of individual i

• µk ∈ Rp: vector of means allele frequencies of group k
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K-means algorithm

The K-mean problem is solved by the following algorithm:

1. select random group means (µk, k = 1, . . . ,K)

2. assign each individual xi to the closest group −→ gk

3. update group means µk

4. go back to 2) until convergence (groups no longer change)
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K-means algorithm

individual

allele

group mean

initialization

step 1

step 2
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K-means: limitations and extensions

Limitations

• slower for large numbers of alleles (e.g. 100,000)

• K-means does not identify the number of clusters (K)

Extension

• run K-means after dimension reduction using PCA

• try increasing values of K

• use Bayesian Information Criterion (BIC) for model selection
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Genetic clustering using K-means & BIC
(Jombart et al. 2010, BMC Genetics)

Simulated data: island model with 6
populations

Performances:

• K-means ≥ STRUCTURE on simulated data (various island
and stepping stone models)

• orders of magnitude faster (seconds vs hours/days)
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Why identifying clusters is not the whole story
Example of cattle breeds diversity (30 microsatellites, 704 individuals).

Group membership probabilities:

m
em

be
rs

hi
p 

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Borgou
Zebu
Lagunaire
NDama

Somba
Aubrac
Bazadais
BlondeAquitaine

BretPieNoire
Charolais
Gascon
Limousin

MaineAnjou
Montbeliard
Salers

Important to assess the relationships between clusters.
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Aggregating data by groups

alleles 

group 1

group 2

group 4

group 3

average

average

alleles 

group

individual

−→ multivariate analysis of group allele frequencies.
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Analysing group data

Available methods:

• Principal Component Analysis (PCA) of allele frequency table

• Genetic distance between populations −→ Principal
Coordinates Analysis (PCoA)

• Correspondance Analysis (CA) of allele counts

Criticism:

• Lose individual information

• Neglect within-group diversity

• CA: possible artefactual outliers
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Multivariate analysis: reminder

Find principal components with maximum total variance.
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But total variance may not reflect group differences

Need to optimize different criteria.
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Optimizing different criteria

Similar approaches to PCA can be used to optimize different
quantities:

• PCA: total variance

• Between-group PCA: variance between groups

• Within-group PCA: variance within groups

• Discriminant Analysis: variance between groups / variance
within groups
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From PCA to DA: increasing group differentiation
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Discriminant Analysis: limitations and extensions

Limitations:

• DA requires less variables (alleles) than observations
(individuals)

• DA requires uncorrelated variables (no frequencies, no linkage
disequilibrium)

Discriminant Analysis of Principal Components (DAPC)1:

• data orthogonalisation/reduction using PCA before DA

• overcomes limitations of DA

• group membership probabilities, group prediction

1
Jombart et al. 2010, BMC Genetics

25/30



Introduction Identifying groups Exploring group diversity

Discriminant Analysis: limitations and extensions

Limitations:

• DA requires less variables (alleles) than observations
(individuals)

• DA requires uncorrelated variables (no frequencies, no linkage
disequilibrium)

Discriminant Analysis of Principal Components (DAPC)1:

• data orthogonalisation/reduction using PCA before DA

• overcomes limitations of DA

• group membership probabilities, group prediction

1
Jombart et al. 2010, BMC Genetics

25/30



Introduction Identifying groups Exploring group diversity

Rationale of DAPC
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PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.

Little temporal evolution, burst of diversity in 2002??
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DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).
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Other features

DAPC can be used to:

• provides group assignment
probabilities

• can use supplementary individuals

• can predict group membership of
new data

• can be used for variable selection
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Time to get your hands dirty (again)!

The pdf of the practical is online:

http://adegenet.r-forge.r-project.org/

or

Google → adegenet → documents → “GDAR August 2016”
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