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From processes to structures

Genetic structure: non-random distribution of genetic diversity.

Identify structures to infer processes.
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Island model

Reproduction within populations + migration.

Population A Population B

migration

migration
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Hierarchical island model

Reproduction within subpopulations + stratified migration.

Populations A Populations B

migration
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Isolation by distance (IBD)

Reproduction between neighbours → ’diffusion’ of genes
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Inbreeding avoidance

Mating with individuals from another population → ’repulsion’
structure
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Genetic models and spatial structures

• island / hierarchical island model: patches of related
genotypes

• isolation by distance (IBD): clines of genetic differentiation

• inbreeding avoidance: repulsion structure

⇒ Genetic processes often create spatial structures.
How can we reveal them?
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Spatial autocorrelation

Definitions:

• in general: values of a variable non independent from the
corresponding spatial locations

• in genetics: genetic distance is correlated to spatial distance

Two types of spatial autocorrelation:

• positive: closer individuals are more similar than at random

• negative: closer individuals are more dissimilar than at
random
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Spatial autocorrelation: illustration

Negative autocorrelationPositive autocorrelation No autocorrelation (random)

How do we measure spatial autocorrelation?
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From spatial coordinates to spatial weights

a

b

c

d

e

Matrix of spatial weights L

Row i : uniform weights for neighbours of i.

a b c d e
a 0.000 0.500 0.000 0.000 0.500
b 0.333 0.000 0.000 0.333 0.333
c 0.000 0.000 0.000 1.000 0.000
d 0.000 0.333 0.333 0.000 0.333
e 0.333 0.333 0.000 0.333 0.000

Let x be a variable with one value at each location.

The lag vector Lx computes mean values of neighbours.
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A variable and its lag-vector

Random:

 d = 2 
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)

Regression of Lx onto x :

Df Sum Sq Mean Sq F value Pr(>F)
x 1 0.02 0.02 0.06 0.8081
Residuals 98 31.53 0.32
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A variable and its lag-vector

Positive
autocorrelation:

 d = 2 

 −2.5  −1.5  −0.5  0.5  1.5  2.5

Lag vector :

●
●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

variable (x)

la
g 

ve
ct

or
 (

Lx
)

Regression of Lx onto x :

Df Sum Sq Mean Sq F value Pr(>F)
xG 1 65.91 65.91 245.69 0.0000
Residuals 98 26.29 0.27
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A variable and its lag-vector

Negative
autocorrelation:

 d = 2 

 −3  −1  1  3

Lag vector :
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Regression of Lx onto x :

Df Sum Sq Mean Sq F value Pr(>F)
xL 1 87.56 87.56 77.80 0.0000
Residuals 98 110.29 1.13
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Moran’s index: definition

Moran’s I:

I(x) =
xTLx

n

1

var(x)

where:

• x ∈ Rn : a centred variable (e.g. allele frequency, PC)

• L : matrix of spatial weights (nxn)

• Lx : lag vector

• I0 = −1
n−1 ≈ 0 : null value (no autocorrelation, i.e. random

spatial distribution)

⇒ Moran’s I varies like 〈x,Lx〉.
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Variable, lag-vector, Moran’s I
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Variable, lag-vector, Moran’s I
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Variable, lag-vector, Moran’s I

Negative
autocorrelation:

 d = 2 

 −3  −1  1  3

Lag vector :
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Testing Moran’s I

Monte Carlo procedure:

• compute I from the data

• permute randomly the locations to get a value of I under H0:
“x is distributed at random across space.”

• repeat this operation a large number of times to obtain a
reference distribution of I under H0

• compare initial value to the reference distribution to get a
p-value.
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Application: testing spatial structures in principal
components

Data (2 population, island model):
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Application: testing spatial structures in principal
components

PCA results, PC 1:
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Univariate /vs/ multivariate correlation

• Moran’s I is univariate

• solution: test a few principal components

• problems:
• does not use all the genetic information
• which PC to test?
• correction for multiple testing

⇒ need for multivariate tests
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Mantel’s correlation: rationale

Correlation between two unfolded distance matrices.

n

p

N

Correlation

n

n

Genetic
distances

n

n

Geographic
distances

n(n-1)/2

1

n(n-1)/2

1

21/33



Introduction Testing spatial structures Multivariate analysis of spatial patterns

Mantel’s correlation: definition

Notations:

• X = [xij ] (X ∈ Rn×n): genetic distances

• Y = [yij ] (Y ∈ Rn×n): geographic distances

• x̄, ȳ: means of x and y (excepting diagonals)

• sx, sy: standard deviation of x and y (excepting diagonals)

Original definition (unstandardized):

zM =

n−1∑
i=1

n∑
j=i+1

xijyij
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Mantel’s correlation: definition

Notations:

• X = [xij ] (X ∈ Rn×n): genetic distances

• Y = [yij ] (Y ∈ Rn×n): geographic distances

• x̄, ȳ: means of x and y (excepting diagonals)

• sx, sy: standard deviation of x and y (excepting diagonals)

Standardized coefficient (true correlation):

rM =
1

d− 1

n−1∑
i=1

n∑
j=i+1

(
xij − x̄

sx
)(
yij − ȳ

sy
)
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Testing Mantel correlation

Monte Carlo procedure:

• compute zM or rM from the data

• permute randomly the rows and columns of one matrix,
recompute the test statistic (i.e., under H0: ”no correlation”)

• repeat this operation many times to generate a reference
distribution

• compare initial value to the reference distribution to get a
p-value.
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Application: testing spatial structures

Data (2 population, island model):
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Outline

Introduction

Testing spatial structures
Moran’s Index
Mantel’s correlation

Multivariate analysis of spatial patterns
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Mapping principal components

Maps of the three first principal components of PCA.

Are we actually looking for spatial patterns here?
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Multivariate analysis: reminder

Principal components with maximum total variance.

⇒ Spatial information is not taken into account.
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Using spatial information

• usual multivariate analyses ignore spatial information

• they may reveal obvious spatial structures, but overlook finer
patterns

⇒ need for taking spatial information into account
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Spatial Principal Component Analysis (sPCA): rationale

Principal components should:

• display variability ⇒ optimize total variance

• display positive autocorrelation ⇒ large Moran’s I

• (or) display negative autocorrelation ⇒ low (negative)
Moran’s I

sPCA decomposes: (total variance) × (Moran’s I )
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Spatial Principal Component Analysis (sPCA): outputs
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Global and local structures
Unlike other multivariate methods, sPCA has positive and
negative eigenvalues

How do we get these in practice?
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Time to get your hands dirty (one last time)!

The pdf of the practical is online:

http://adegenet.r-forge.r-project.org/

or

Google → adegenet → documents → “GDAR August 2016”
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