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Abstract

This practical course aims at illustrating some possible applications of
multivariate analyses to genetic markers data, using the R software [15].
Although a basic knowledge of the R language is assumed, most necessary
commands are provided, so that coding should not be an obstacle. Two ex-
ercises are proposed, which go through different topics in genetic data anal-
ysis, respectively the study of spatial genetic structures, and the coherence
of information coming from different markers. After going through the first
section (‘Let’s start’), you should feel free to get to the exercise you want,
as these are meant to be independent. This practical course uses mostly the
adegenet [11] and ade4 packages [4, 8, 7], but others like adehabitat [2, 1],
genetics [16] and hierfstat [9] are also used.
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1 Let’s start

1.1 Loading the packages

Before going further, we shall make sure that all we need is installed on the
computer. Launch R, and make sure that the version being used is greater
than 2.8.1 by typing:

> R.version.string

[1] "R version 2.11.1 (2010-05-31)"

The next thing to do is check that relevant packages are installed. To load
an installed package, use the library instruction; for instance:

> library(adegenet)

loads adegenet if it is installed (and issues an error otherwise). To get the
version of a package, use:

> packageDescription("adegenet", fields = "Version")

[1] "1.2-7"

adegenet version should read 1.2-6 or greater.
In case a package would not be installed, you can install it using in-

stall.packages. To install all the required dependencies, specify dep=TRUE.
For instance, the following instruction should install adegenet with all its de-
pendencies (it can take up to a few minutes, so don’t run it unless adegenet
is not installed):

> install.packages("adegenet", dep = TRUE)

Using the previous instructions, load (and install if required) the pack-
ages adegenet, ade4, spdep, genetics, and hierfstat.

1.2 How to get information?

There are several ways of getting information about R in general, or about
adegenet in particular. The function help.search is used to look for help
on a given topic. For instance:

> help.search("Hardy-Weinberg")

replies that there is a function HWE.test.genind in the adegenet package,
other similar functions in genetics and pegas. To get help for a given func-
tion, use ?foo where ‘foo’ is the function of interest. For instance (quotes
can be removed):

> `?`(spca)
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will open the manpage of the spatial principal component analysis [12]. At
the end of a manpage, an ‘example’ section often shows how to use a func-
tion. This can be copied and pasted to the console, or directly executed
from the console using example. For further questions concerning R, the
function RSiteSearch is a powerful tool to make an online research using
keywords in R’s archives (mailing lists and manpages).

adegenet has a few extra documentation sources. Information can be
found from the website (http://adegenet.r-forge.r-project.org/), in
the ‘documents’ section, including two tutorials, a manual which includes
all manpages of the package, and a dedicated mailing list with searchable
archives. To open the website from R, use:

> adegenetWeb()

The same can be done for tutorials, using adegenetTutorial (see manpage
to choose the tutorial to open).

You will also find a listing of the main functions of the package typing:

> `?`(adegenet)

Note that you can also browse help pages as html pages, using:

> help.start()

To go to the adegenet page, click ‘packages’, ‘adegenet’, and ‘adegenet-
package’.

Lastly, several mailing lists are available to find different kinds of infor-
mation on R; to name a few:

R-help (https://stat.ethz.ch/mailman/listinfo/r-help): general ques-
tions about R

R-sig-genetics (https://stat.ethz.ch/mailman/listinfo/r-sig-genetics):
genetics in R

adegenet forum (https://lists.r-forge.r-project.org/cgi-bin/mailman/
listinfo/adegenet-forum): adegenet and multivariate analysis of
genetic markers
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2 Spatial genetic structure of the chamois

in the Bauges mountains

The chamois (Rupicapra rupicapra) is a conserved species in France. The
Bauges mountains is a protected area in which the species has been recently
studied. One of the most important questions for conservation purposes
relates to whether individuals from this area form a single reproductive
unit, or whether they are structured into sub-groups, and if so, what causes
are likely to induce this structuring.

While field observations are very scarce and do not allow to answer this
question, genetic data can be used to tackle the issue, as departure from
panmixia should result in genetic structuring. The dataset rupica contains
335 georeferenced genotypes of Chamois from the Bauges mountains for 9
microsatellite markers, which we propose to analyse in this exercise.

2.1 An overview of the data

We first load the data:

> data(rupica)
> rupica

#####################
### Genind object ###
#####################

- genotypes of individuals -

S4 class: genind
@call: NULL

@tab: 335 x 55 matrix of genotypes

@ind.names: vector of 335 individual names
@loc.names: vector of 9 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 55 columns of @tab
@all.names: list of 9 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: - empty -
@pop.names: - empty -

@other: a list containing: xy mnt showBauges

rupica is a typical genind object, which is the class of objects storing
genotypes (as opposed to population data) in adegenet. rupica also contains
topographic information about the sampled area, which can be displayed by
calling rupica$other$showBauges. For instance, the spatial distribution of
the sampling can be displayed as follows:

> rupica$other$showBauges()
> points(rupica$other$xy, col = "red", pch = 20)
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This spatial distribution is clearly not random, but arranged into loose
clusters; this can be confirmed by superimposing a kernel density curve (in
blue) on the previous figure:

> rupica$other$showBauges()
> s.kde2d(rupica$other$xy, add.plot = TRUE)
> points(rupica$other$xy, col = "red", pch = 20)
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Is geographical clustering strong enough to assign safely each individual
to a group? Accordingly, shall we analyse these data at individual or group
level?

2.2 Standard analyses

As a prior clustering of genotypes is not known, we cannot employ usual FST -
based approaches to detect genetic structuring. However, genetic structure
could still result in a deficit of heterozygosity. The summary of genind

objects provides expected and observed heterozygosity for each locus, which
allows for a comparison:

> rupica.smry <- summary(rupica)

# Total number of genotypes: 335

# Population sample sizes:

335

# Number of alleles per locus:
L1 L2 L3 L4 L5 L6 L7 L8 L9
7 10 7 6 5 5 6 4 5

# Number of alleles per population:
1
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55

# Percentage of missing data:
[1] 0

# Observed heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.5880597 0.6208955 0.5253731 0.7582090 0.6597015 0.5283582 0.6298507 0.5552239
L9

0.4149254

# Expected heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.6076769 0.6532517 0.5314591 0.7259657 0.6601604 0.5706082 0.6412742 0.5473112
L9

0.4070709

> plot(rupica.smry$Hexp, rupica.smry$Hobs, main = "Observed vs expected heterozygosity")
> abline(0, 1, col = "red")
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The red line indicate identity between both quantities. What can we say
about heterozygosity in this population? The following test provides further
insights to answer this question:

> t.test(rupica.smry$Hexp, rupica.smry$Hobs, paired = TRUE, var.equal = TRUE)

Paired t-test

data: rupica.smry$Hexp and rupica.smry$Hobs
t = 0.9461, df = 8, p-value = 0.3718
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
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-0.01025068 0.02451318
sample estimates:
mean of the differences

0.00713125

We can seek a global picture of the genetic diversity among genotypes
using a Principal Component Analysis (PCA, [14, 10], dudi.pca in ade4

package). The analysis is performed on a table of standardised alleles fre-
quencies, obtained by scaleGen:

> rupica.X <- scaleGen(rupica, method = "binom")
> rupica.pca1 <- dudi.pca(rupica.X, cent = FALSE, scale = FALSE)

0.
0

0.
5

1.
0

1.
5

The function dudi.pca displays a barplot of eigenvalues and asks for a
number of retained principal components. In general, eigenvalues represent
the amount of genetic diversity — as measured by the multivariate method
being used — represented by each principal component (PC). Here, each
eigenvalue is the variance of the corresponding PC. This is also, up to a
constant, the mean squared Euclidean distance between individuals. This is
because (for x ∈ Rn):

var(x) =

∑n
i=1

∑n
j=1(xi − xj)2

2n(n− 1)

This can be easily verified:
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> rupica.pca1$eig[1]

[1] 1.560585

> pc1 <- rupica.pca1$li[, 1]
> var(pc1)

[1] 1.565257

> var(pc1) * (334/335)

[1] 1.560585

> 0.5 * mean(dist(pc1)^2) * (334/335)

[1] 1.560585

An abrupt decrease in eigenvalues is likely to indicate the boundary
between true patterns and non-interpretable structures. In this case, we
shall examin the first two principal components (though nothing really clear
emerges from the eigenvalues).

> rupica.pca1

Duality diagramm
class: pca dudi
$call: dudi.pca(df = rupica.X, center = FALSE, scale = FALSE, scannf = FALSE,

nf = 2)

$nf: 2 axis-components saved
$rank: 45
eigen values: 1.561 1.34 1.168 1.097 1.071 ...
vector length mode content

1 $cw 55 numeric column weights
2 $lw 335 numeric row weights
3 $eig 45 numeric eigen values

data.frame nrow ncol content
1 $tab 335 55 modified array
2 $li 335 2 row coordinates
3 $l1 335 2 row normed scores
4 $co 55 2 column coordinates
5 $c1 55 2 column normed scores
other elements: cent norm

A dudi object contains various information; in the case of PCA, principal
axes (loadings), principal components (synthetic variable), and eigenvalues
are respectively stored in $c1, $li, and $eig slots. The function s.label

can be used to display to two first components; a kernel density (s.kde2d)
is used for a better assessment of the distribution of the genotypes onto the
principal axes:
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> s.label(rupica.pca1$li)
> s.kde2d(rupica.pca1$li, add.p = TRUE, cpoint = 0)
> add.scatter.eig(rupica.pca1$eig, 2, 1, 2)
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What can we say about the genetic diversity among these genotypes as
inferred by PCA? The function loadingplot allows to visualize the con-
tribution of each allele, expressed as squared loadings, for a given principal
component. This figure then gives further clues about the revealed structure:

> loadingplot(rupica.pca1$c1^2)
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We can get back to the genotypes for the concerned markers (e.g., Bm203)
to check whether the highlighted genotypes are indeed uncommon. true-

names extracts the table of allele frequencies from a genind object (restoring
original labels for markers, alleles, and individuals):

> X <- truenames(rupica)
> class(X)

[1] "matrix"

> dim(X)

[1] 335 55

> bm203.221 <- X[, "Bm203.221"]
> table(bm203.221)

bm203.221
0 0.00597014925373134 0.5

330 1 4

Only 4 genotypes possess one copy of this allele (the second result corre-
sponds to a replaced missing data). Which individuals are they?
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> rownames(X)[bm203.221 == 0.5]

001 019 029 276
"8" "86" "600" "7385"

Conclusion?

Just to make sure that this analysis shows no spatial pattern, we can
map geographically the principal components. The function s.value is well-
suited to do so, using black and white squares of variable size for positive
and negative values. For instance:

> s.value(cbind(1:11, rep(1, 11)), -5:5, cleg = 0)
> text(1:11, rep(1, 11), -5:5, col = "red", cex = 1.5)

 d = 2 

−5 −4 −3 −2 −1 0 1 2 3 4 5

We can then apply this graphical representation to the first two principal
components of the PCA:

> showBauges <- rupica$other$showBauges
> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[, 1], add.p = TRUE, cleg = 0.5)
> title("PCA - first PC", col.main = "yellow", line = -2, cex.main = 2)
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> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[, 2], add.p = TRUE, csize = 0.7)
> title("PCA - second PC", col.main = "yellow", line = -2, cex.main = 2)
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What can we say about spatial genetic structure as inferred by PCA?

2.3 spatial Principal Component Analysis

PCA did not reveal any kind of spatial genetic structure, but is not anyway
meant to do so; most likely, it will fail to detect spatial genetic structures
that are not associated with the strongest genetic differentiation. The spatial
Principal Component Analysis (sPCA, [12]) has been developed to include
spatial information in the analysis of genetic data. Although implemented
in adegenet, sPCA needs spatial methods from the spdep package, which
should thus be loaded:
> library(spdep)

sPCA first requires the spatial proximities between genotypes to be mod-
eled. The most convenient way to do so is to define geographic neighbours
according to a given, preferably objective criterion. This amounts to con-
structing a spatial graph on which neighbours are linked by an edge. The
function chooseCN proposes several spatial graphs (try example(chooseCN)

for an example) that can be chosen interactively. In the case of the Chamois,
we can use the intersection of home ranges as a criterion for neighbourhood;
this amounts to considering as neighbours pairs of individuals separated by
less than 2300 m.
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Knowing that spatial coordinates of individuals are stored in rupica$other$xy,
use chooseCN to build the corresponding spatial graph. Save the resulting
object as rupica.graph; this object should look like this (displaying it may
take a few seconds):

> rupica.graph

Neighbour list object:
Number of regions: 335
Number of nonzero links: 18018
Percentage nonzero weights: 16.05525
Average number of links: 53.78507

> plot(rupica.graph, rupica$other$xy)
> title("rupica.graph")

From there, we can use the spca function. Note that it would also be
possible to specify the parameters of the spatial graph as arguments of spca.

> rupica.spca1 <- spca(rupica, cn = rupica.graph)
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This figure illustrates the fundamental difference between PCA and sPCA.
Like dudi.pca, spca displays a barplot of eigenvalues, but unlike in PCA,
eigenvalues of sPCA can also be negative. This is because the criterion opti-
mized by the analysis can have positive and negative values, corresponding
respectively to positive and negative autocorrelation. Positive spatial auto-
correlation correspond to greater genetic similarity between geographically
closer individuals. Conversely, negative spatial autocorrelation corresponds
to greater dissimilarity between neighbours. The spatial autocorrelation of
a variable is measured by Moran’s I, and interpreted as follows:

? I0 = −1/(n−1): no spatial autocorrelation (x is randomly distributed
across space)

? I > I0: positive spatial autocorrelation

? I < I0: negative spatial autocorrelation

Principal components of PCA ensure that (φ referring to one PC) var(φ)
is maximum. By contrast, sPCA provides PC which decompose the quantity
var(φ)I(φ). In other words, PCA focuses on variability only, while sPCA is
a compromise between variability (var(φ)) and spatial structure (I(φ)).

In this case, only the principal components associated with the two first
positive eigenvalues (in red) shall be retained. The printing of spca objects
is more explicit than dudi objects, but named with the same conventions:

> rupica.spca1
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########################################
# spatial Principal Component Analysis #
########################################

class: spca
$call: spca(obj = rupica, cn = rupica.graph, scannf = FALSE, nfposi = 2,

nfnega = 0)

$nfposi: 2 axis-components saved
$nfnega: 0 axis-components saved
Positive eigenvalues: 0.03018 0.01408 0.009211 0.006835 0.004529 ...
Negative eigenvalues: -0.008611 -0.006414 -0.004451 -0.003963 -0.003329 ...

vector length mode content
1 $eig 45 numeric eigenvalues

data.frame nrow ncol content
1 $c1 55 2 principal axes: scaled vectors of alleles loadings
2 $li 335 2 principal components: coordinates of entities ('scores')
3 $ls 335 2 lag vector of principal components
4 $as 2 2 pca axes onto spca axes

$xy: matrix of spatial coordinates
$lw: a list of spatial weights (class 'listw')

other elements: NULL

Unlike usual multivariate analyses, eigenvalues of sPCA are composite:
they measure both the genetic diversity (variance) and the spatial struc-
ture (spatial autocorrelation measured by Moran’s I). This decomposition
can also be used to choose which principal component to interprete. The
function screeplot allows to display this information graphically:

> screeplot(rupica.spca1)
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While λ1 indicates with no doubt a structure, the second eigenvalue, λ2 is
less clearly distinct from the successive values. Thus, we shall keep in mind
this uncertainty when interpreting the second principal component of the
analysis.

Let us now visualise the identified spatial structures, as we did for the
PCA results:

> showBauges()
> s.value(rupica$other$xy, rupica.spca1$li[, 1], add.p = TRUE,
+ csize = 0.7)
> title("sPCA - first PC", col.main = "yellow", line = -2, cex.main = 2)
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While the pattern is clear enough, we can still clarify the results using lagged
scores, which allow a better perception of positively autocorrelated struc-
tures (by denoisifying data):

> showBauges()
> s.value(rupica$other$xy, rupica.spca1$ls[, 1], add.p = TRUE,
+ csize = 0.7)
> title("sPCA - first lagged PC", col.main = "yellow", line = -2,
+ cex.main = 2)
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How would you interprete this result? How does it compare to results
obtained by PCA? What likely inference can we make about the way the
landscape influences this population of Chamois?

The second structure remains to be interpreted; using the same graphi-
cal representation as for the first principal component, try and visualise the
second principal component. Some field observation suggest that it is not
artefactual. How would you interprete this second structure?

To finish, you can try representing both structures at the same time
using the color coding introduced by [3] (?colorplot). The final figure
should ressemble this (although colors may change from one computer to
another):
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3 Different pictures of biodiversity: African

and French cattle breeds

The study of the genetic diversity for conservation purposes asks the question
of which markers should be used for such studies. In the case of domestic
cattle breeds, the FAO (http://www.fao.org/) recommended using a panel
of 30 microstallites for conservation genetics studies. The dataset microbov
provides the genotypes of 704 cattles structured in two species and 15 breeds
for the 30 microsatellites recommended by the FAO.

One question of interest, which can be asked through this dataset, relates
to whether all these markers provide the same information, and whether a
smaller subset of markers could be used to achieve the same level of resolu-
tion.

3.1 An overview of the data - basic analyses

We first load the data:

> data(microbov)
> microbov

#####################
### Genind object ###
#####################

- genotypes of individuals -

S4 class: genind
@call: genind(tab = truenames(microbov)$tab, pop = truenames(microbov)$pop)

@tab: 704 x 373 matrix of genotypes

@ind.names: vector of 704 individual names
@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 373 columns of @tab
@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

@other: a list containing: coun breed spe

microbov is a typical genind object, which is the class of objects storing
genotypes in adegenet. It also contains extra information (in microbov$other)
relating to the origin (coun, Africa or France), the breed (breed), and the
species (spe, Bos taurus or Bos indicus) of the individuals.

The function summary gives an overview of the data:

> microbov.smry <- summary(microbov)
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# Total number of genotypes: 704

# Population sample sizes:
Borgou Zebu Lagunaire NDama Somba

50 50 51 30 50
Aubrac Bazadais BlondeAquitaine BretPieNoire Charolais

50 47 61 31 55
Gascon Limousin MaineAnjou Montbeliard Salers

50 50 49 30 50

# Number of alleles per locus:
L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
9 7 12 5 11 9 7 12 13 9 13 16 14 14 14 10 10 19 11 13

L21 L22 L23 L24 L25 L26 L27 L28 L29 L30
17 12 16 13 12 15 8 22 21 9

# Number of alleles per population:
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
251 235 143 179 194 212 146 196 176 200 213 186 191 168 188

# Percentage of missing data:
[1] 2.320076

# Observed heterozygosity:
L01 L02 L03 L04 L05 L06 L07 L08

0.5530086 0.5399129 0.6905444 0.4508076 0.6415094 0.5974212 0.2904624 0.5860534
L09 L10 L11 L12 L13 L14 L15 L16

0.6848306 0.5771429 0.6603221 0.7054598 0.5953079 0.7052023 0.7979943 0.6384505
L17 L18 L19 L20 L21 L22 L23 L24

0.4534884 0.6396527 0.6474074 0.6285714 0.6603499 0.6569343 0.5941807 0.7381295
L25 L26 L27 L28 L29 L30

0.6762178 0.7722063 0.6174785 0.6891117 0.6810730 0.4392387

# Expected heterozygosity:
L01 L02 L03 L04 L05 L06 L07 L08

0.7075198 0.6004379 0.7807931 0.5373943 0.7899071 0.7613320 0.4945057 0.6859640
L09 L10 L11 L12 L13 L14 L15 L16

0.8336124 0.7678602 0.7747632 0.8217379 0.7471427 0.7597794 0.8924578 0.7546062
L17 L18 L19 L20 L21 L22 L23 L24

0.6336998 0.7746696 0.7489997 0.7805834 0.7682354 0.7719260 0.7693717 0.8365613
L25 L26 L27 L28 L29 L30

0.7417581 0.8921047 0.6876811 0.7718615 0.8882143 0.5648676

This allows, for instance, to compare observed and expected heterozy-
gosity at each locus:

> plot(microbov.smry$Hexp, microbov.smry$Hobs, main = "Observed vs expected heterozygosity")
> abline(0, 1, col = "red")

24



●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

0.5 0.6 0.7 0.8 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Observed vs expected heterozygosity

microbov.smry$Hexp

m
ic

ro
bo

v.
sm

ry
$H

ob
s

What can we tell about these populations? Is this result surprising?
To infer genetic differentiation using FST -based approaches, we have to

check that populations are at Hardy-Weinberg equilibrium for each locus.
Given that we have 15 breeds for 30 loci to analyse, we have to perform
15x30=450 tests (!). Fortunately, the function HWE.test.genind does this
job, returning either a list of detailed tests, or a matrix of p-values. In our
case, interpreting each test and correcting for multiple testing would quickly
become cumbersome. Rather, we shall describe how p-values are distributed
across populations and across markers. We perform Hardy-Weinberg tests,
asking for a matrix of p-values:

> microbov.HWE <- HWE.test.genind(microbov, res = "matrix")
> hist(microbov.HWE, col = "pink", main = "Distribution of HWE test p-values",
+ nclass = 60)
> points(as.vector(microbov.HWE), rep(1, 450), col = "red", pch = "|")
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While a majority of tests do not indicate deviation from Hardy-Weinberg
equilibrium, some exceptions seem to exist. Are these structured by popu-
lations?
> barplot(apply(microbov.HWE, 1, mean), col = "deepskyblue1", main = "Distribution of HWE test mean p-values\n per population",
+ ylab = "mean p-value", las = 3)
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Are these structured by markers?

> barplot(apply(microbov.HWE, 2, mean), col = "green2", main = "Distribution of HWE test mean p-values\n per marker",
+ ylab = "mean p-value", las = 3)
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What would you conclude? Toward the end of this exercise, we shall
remember that INRA35 seems to be a particular marker.

Genetic differentiation can be tested for multiallelic data using Goudet’s
G test, implemented in hierfstat, and wrapped for genind objects by gstat.randtest.
Basically, we can test the significance of the genetic differentiation between
breeds, which is the default ‘population’ of the genotypes. For simplicity
(and because it does not alter the results), all markers (including INRA35)
are kept in this test:

> microbov.gtest1 <- gstat.randtest(microbov, nsim = 199)
> microbov.gtest1

Monte-Carlo test
Call: gstat.randtest(x = microbov, nsim = 199)

Observation: 23534.67

Based on 199 replicates
Simulated p-value: 0.005
Alternative hypothesis: greater

Std.Obs Expectation Variance
121.0326 5450.5525 22324.9217
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> plot(microbov.gtest1)
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The histogram shows the distribution of the test statistic obtained by a
Monte Carlo procedure (permutation of the group factor). The original
value of the statistic (on the right) being hugely superior to these values,
there is no doubt that the genetic structuring is very significant. However,
we can wonder if this structuration among breeds persists after accounting
for the species differences. This can be tested using the same function:

> microbov.gtest2 <- gstat.randtest(microbov, nsim = 199, sup.pop = microbov$other$spe,
+ method = "within")
> microbov.gtest2

Monte-Carlo test
Call: gstat.randtest(x = microbov, method = "within", sup.pop = microbov$other$spe,

nsim = 199)

Observation: 23534.67

Based on 199 replicates
Simulated p-value: 0.005
Alternative hypothesis: greater

Std.Obs Expectation Variance
106.4478 10423.5962 15170.6293

> plot(microbov.gtest2)
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Is their a significant genetic differentiation between breeds once species
differentiation has been partialled out?

3.2 A first glance: Principal Component Analysis

Now that we know that strong genetic structures exists among the consid-
ered breeds, we can try to get a picture of it. Principal Component Analysis
(PCA [14, 10]) is well suited for a first glance at the data. PCA is im-
plemented in the dudi.pca function of the ade4 package. The analysis is
performed on a table of standardised relative alleles frequencies, obtained
by scaleGen (which also replaces missing values adequately):

> microbov.X <- scaleGen(microbov, method = "binom")
> microbov.pca1 <- dudi.pca(microbov.X, cent = FALSE, scale = FALSE)
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The function dudi.pca displays a barplot of eigenvalues and asks for a num-
ber of retained principal components. Eigenvalues represent the amount of
variability (as measured by the variance/pairwise Euclidean distances) con-
tained in each principal component. An abrupt decrease in eigenvalues is
likely to indicate the boundary between strong and less interpretable struc-
tures. In this case, the first three eigenvalues clearly indicate strong struc-
tures; the first three principal components are thus retained.

A dudi object contains various information; in the case of PCA, principal
axes (loadings), principal components (synthetic variable), and eigenvalues
are respectively stored in microbov.pca1$c1, microbov.pca1$li, and mi-

crobov.pca1$eig. The function s.class can be used to display to two first
principal components, while grouping genotypes by populations:

> par(bg = "lightgrey")
> palette <- rainbow(50)
> s.class(microbov.pca1$li, pop(microbov), col = 1:15, sub = "PCA - PC 1 and 2",
+ csub = 2)
> add.scatter.eig(microbov.pca1$eig[1:60], 3, 1, 2, posi = "top")
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 PCA − PC 1 and 2 
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> par(bg = "lightgrey")
> s.class(microbov.pca1$li, xax = 1, yax = 3, pop(microbov), col = 1:15,
+ sub = "PCA - PC 1 and 3", csub = 2)
> add.scatter.eig(microbov.pca1$eig[1:60], 3, 1, 3, posi = "top")
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 PCA − PC 1 and 3 

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

 Borgou 
 Zebu  Lagunaire  NDama 

 Somba 

 Aubrac 

 Bazadais 

 BlondeAquitaine 

 BretPieNoire 
 Charolais 

 Gascon  Limousin 

 MaineAnjou 

 Montbeliard 

 Salers 

 Eigenvalues 

These figures display the ‘best’ picture of genetic variability among the
genotypes achievable in three dimensions. How would you interprete the
resulting structures?

This ordination focuses on the whole variability among individuals; pop-
ulation information is just added a posteriori. Between-class analyses [6] are
a familly of multivariate method which find optimal PC in terms of between-
group inertia (i.e., the centroids of the ellipses in the previous scatterplot).
Here, between-class PCA can be used to assess the between-breed structure
(as illustrated in [11]):

> microbov.bpca1 = between(microbov.pca1, pop(microbov), scannf = FALSE,
+ nf = 3)

> par(bg = "lightgrey")
> s.class(microbov.bpca1$ls, xax = 1, yax = 2, pop(microbov), col = 1:15,
+ sub = "Between PCA - PC 1 and 2", csub = 2)
> add.scatter.eig(microbov.bpca1$eig, 3, 1, 2, posi = "top")
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 Between PCA − PC 1 and 2 
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Is there any improvement in terms of between-breed differentiation? The
slot microbov.bpca1$as contains the projection of PCA axes onto between-
class principal axes (use s.corcircle to display it). How more informative
is the between-class analysis in the present case? What does it mean in
terms of apportionment of the genetic diversity among these cattle breeds?

Now that clear patterns have been identified, we can ask how each marker
contributes to showing these structures. The contribution of each marker
(measured as squared loadings) can be displayed using loadingplot:

> loadingplot(microbov.pca1$c1^2, main = "Allele contributions to the PC1")
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From this picture, could you tell if some markers play a more important
role in the analysis than others? This was the contribution of alleles to the
first principal component. Using the same function and the argument axis,
try to obtain the same figure for the second and third principal components.
Are the conclusions any different (if yes, how)?

3.3 A deeper look: Multiple Co-Inertia Analysis

PCA is not the most appropriate tool to compare the information provided
by different markers about the populations (i.e., breeds). Indeed, it only
seeks principal axes of maximum genetic variability from all alleles, while
a more appropriate approach would seek different principal components for
each marker separately, and then compare them. The Multiple Co-Inertia
Analysis (MCOA, [5, 13]) is especially devoted to this task. It performs
separate analyses for each marker, and coordinates these analyses so as to
highlight the common information they provide about populations. From
these coordinated analyses, it builds a compromise, that is, a typology of
populations reflecting the consensus information provided by the markers.
Denoting uk ∈ Rn the principal component of the coordinated analysis of
the kth (k = 1, . . . ,K) microsatellite marker, and v ∈ Rn the score of the
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compromise, MCOA ensures:

K∑
k=1

wkcov(uk,v)2 =
K∑
k=1

wkvar(uk)var(v)cor(uk,v)2

is maximum (wk is a weight for the kth marker). Therefore, MCOA achieves
a consenus typology reflecting the genetic variability (var(v)) which is com-
mon (cor(uk,v)2) to a majority of markers (var(uk)). It also provides a
direct measure of the contribution of each marker to this consensus infor-
mation, as measured by:

wkcov(uk,v)2

λ

where λ is the eigenvalue corresponding to v. This quantity is genuinely the
proportion of a given structure exhibited by a single marker.

First of all, given that within-breed variability seems negligible com-
pared to between-breed variability, we reduce data to counts of alleles per
populations (losing the distinction between individuals). Objects storing
population data in adegenet are genpop objects. This transformation is
achieved by genind2genpop:

> bov <- genind2genpop(microbov)

Converting data from a genind to a genpop object...

...done.

> bov

#####################
### Genpop object ###
#####################

- Alleles counts for populations -

S4 class: genpop
@call: genind2genpop(x = microbov)

@tab: 15 x 373 matrix of alleles counts

@pop.names: vector of 15 population names
@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 373 columns of @tab
@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2
@type: codom

@other: a list containing: coun breed spe

Data are then separated by marker using seploc, and only tables of
allele counts are retained for further analysis:
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> lbov <- seploc(bov)
> lX <- lapply(lbov, truenames)
> class(lX)

[1] "list"

> names(lX)

[1] "INRA63" "INRA5" "ETH225" "ILSTS5" "HEL5" "HEL1" "INRA35"
[8] "ETH152" "INRA23" "ETH10" "HEL9" "CSSM66" "INRA32" "ETH3"
[15] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"
[22] "CSRM60" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
[29] "TGLA53" "SPS115"

> lX$INRA63

INRA63.167 INRA63.171 INRA63.173 INRA63.175 INRA63.177
Borgou 0 0 0 4 27
Zebu 0 1 0 7 16
Lagunaire 1 0 0 16 44
NDama 0 0 0 2 39
Somba 0 0 0 12 42
Aubrac 0 0 0 80 0
Bazadais 0 0 0 54 28
BlondeAquitaine 0 0 0 54 52
BretPieNoire 0 0 1 39 18
Charolais 0 0 5 46 37
Gascon 0 0 0 77 1
Limousin 0 0 1 45 52
MaineAnjou 0 1 0 46 48
Montbeliard 0 0 0 25 25
Salers 0 0 0 70 0

INRA63.179 INRA63.181 INRA63.183 INRA63.185
Borgou 1 7 60 1
Zebu 4 19 47 6
Lagunaire 0 2 16 23
NDama 5 11 3 0
Somba 3 8 34 1
Aubrac 20 0 0 0
Bazadais 0 0 10 0
BlondeAquitaine 7 0 7 0
BretPieNoire 2 0 2 0
Charolais 15 0 1 0
Gascon 11 0 8 3
Limousin 2 0 0 0
MaineAnjou 1 0 0 0
Montbeliard 4 0 6 0
Salers 25 0 5 0

kbov contains counts of alleles per population separately for each marker.
After turning these into allele frequencies, each table is analysed by a PCA.
The method is applied to all 30 tables in a single command using lapply:

> lX <- lapply(lX, prop.table, 1)
> lPCA <- lapply(lX, dudi.pca, center = TRUE, scale = FALSE, scannf = FALSE,
+ nf = 3)
> class(lPCA)

[1] "list"
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> names(lPCA)

[1] "INRA63" "INRA5" "ETH225" "ILSTS5" "HEL5" "HEL1" "INRA35"
[8] "ETH152" "INRA23" "ETH10" "HEL9" "CSSM66" "INRA32" "ETH3"
[15] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"
[22] "CSRM60" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
[29] "TGLA53" "SPS115"

> lPCA$INRA63

Duality diagramm
class: pca dudi
$call: FUN(df = X[[1L]], center = TRUE, scale = FALSE, scannf = FALSE,

nf = 3)

$nf: 3 axis-components saved
$rank: 8
eigen values: 0.09829 0.03924 0.005741 0.003492 0.001314 ...
vector length mode content

1 $cw 9 numeric column weights
2 $lw 15 numeric row weights
3 $eig 8 numeric eigen values

data.frame nrow ncol content
1 $tab 15 9 modified array
2 $li 15 3 row coordinates
3 $l1 15 3 row normed scores
4 $co 9 3 column coordinates
5 $c1 9 3 column normed scores
other elements: cent norm

To visualise the results of a given analysis (here, INRA63), one can use:

> s.label(lPCA$INRA63$li)
> add.scatter.eig(lPCA$INRA63$eig, 3, 1, 2)
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Now, using a for loop (or a lapply, or less elegantly several copy-paste
operations), try and display results of other markers. Can you compare the
information they provide? Note that the situation is complicated by the
fact that the first principal component of one marker might ressemble best
the third of another marker, or even a mixture of several components.

Let us try coordinating these analyses using MCOA. The method is
implemented as the function mcoa in the ade4 package. It requires data to
be stored as a ktab object, which we obtain by:

> bov.ktab <- ktab.list.dudi(lPCA)

> bov.mcoa1 <- mcoa(bov.ktab)
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Proceed like in previous analyses to select the number of retained prin-
cipal components.

> bov.mcoa1

Multiple Co-inertia Analysis
list of class mcoa

$pseudoeig: 15 pseudo eigen values
11.4 3.467 2.274 0.8631 0.4978 ...

$call: mcoa(X = bov.ktab, scannf = FALSE, nf = 3)

$nf: 3 axis saved

data.frame nrow ncol content
1 $SynVar 15 3 synthetic scores
2 $axis 373 3 co-inertia axis
3 $Tli 450 3 co-inertia coordinates
4 $Tl1 450 3 co-inertia normed scores
5 $Tax 120 3 inertia axes onto co-inertia axis
6 $Tco 373 3 columns onto synthetic scores
7 $TL 450 2 factors for Tli Tl1
8 $TC 373 2 factors for Tco
9 $T4 120 2 factors for Tax
10 $lambda 30 3 eigen values (separate analysis)
11 $cov2 30 3 pseudo eigen values (synthetic analysis)
other elements: NULL

The content of a mcoa object is a bit more complicated than that of PCA
(dudi object), but only bits are useful here. bov.mcoa1$Tli contains prin-
cipal components of coordinated analyses for the different markers, while
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bov.mcoa1$SynVar contains the compromise, i.e. the typology of popula-
tions emerging as a consensus among the markers. bov.mcoa1$cov2 gives
the contribution of each marker to each structure of the compromise, and
can be used to assess discrepancies in the information yielded by the different
loci.

Coordinated analyses can be displayed like separated analyses:

> newCoord <- split(bov.mcoa1$Tli, bov.mcoa1$TL[, 1])
> names(newCoord) <- locNames(bov)
> par(mfrow = c(2, 2))
> for (i in 1:4) {
+ s.label(newCoord[[i]], xax = 1, yax = 2, sub = names(newCoord)[i],
+ csub = 1.5)
+ }
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Use the commands above to plot results of different markers, making
sure to visualise the plan of the first and third principal components as well.
How does it compare to the results obtained with previous (uncoordinated)
analyses?

The compromise between all these analyses is very similar to the usual
PCA of all data:

> s.label(bov.mcoa1$SynVar)
> add.scatter.eig(bov.mcoa1$pseudoeig, 3, 1, 2)
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> s.label(bov.mcoa1$SynVar, xax = 1, yax = 3)
> add.scatter.eig(bov.mcoa1$pseudoeig, 3, 1, 3)
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However, we now gained further information about how markers contribute
to this figure. Try and represent graphically the marker contributions stored
in bov.mcoa1$cov2 for the three structures of the compromise. First, ob-
serve that:

> sum(bov.mcoa1$cov2[, 1])

[1] 11.40258

> bov.mcoa1$pseudoeig[1]

[1] 11.40258

Then, plot the contribution of each marker to each of the three scores of the
compromise; an example of result for the first structure would be:

43



IN
R

A
63

IN
R

A
5

E
T

H
22

5
IL

S
T

S
5

H
E

L5
H

E
L1

IN
R

A
35

E
T

H
15

2
IN

R
A

23
E

T
H

10
H

E
L9

C
S

S
M

66
IN

R
A

32
E

T
H

3
B

M
21

13
B

M
18

24
H

E
L1

3
IN

R
A

37
B

M
18

18
IL

S
T

S
6

M
M

12
C

S
R

M
60

E
T

H
18

5
H

A
U

T
24

H
A

U
T

27
T

G
LA

22
7

T
G

LA
12

6
T

G
LA

12
2

T
G

LA
53

S
P

S
11

5

C
on

tr
ib

ut
io

n 
(%

)

0
1

2
3

4
5

Contribution to the Africa/France differentiation

What can we say about the general consistency of these markers? Are
there redundant markers? Are there ‘outlying’ markers? Would it be pos-
sible to achieve the same structuring without using the full panel of 30
microsatellites recommended by the FAO?
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