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ABSTRACT 

The magnitudes of the systematic biases involved in sample heterozygosity 
and sample genetic distances are evaluated, and formulae for  obtaining 
unbiased estimates of average heterozygosity and genetic distance are devel- 
oped. It is also shown that the number of individuals to be used for estimating 
average heterozygosity can be very small if a large number of loci are 
studied and the average heterozygosity is low. The number of individuals 
to be used for estimating genetic distance can also be very small if the genetic 
distance is large and the average heterozygosity of the two species compared 
is low. 

TUDYING the sampling variance of heterozygosity and genetic distance, 
NEI and ROYCHOUDHURY (1974) concluded that for estimating average het- 

erozygosity and genetic distance a large number of loci rather than a large 
number of individuals per locus should be used when the total number of genes 
to be examined is fixed. Recently, GORMAN and RENZI (unpublished) have 
shown that in lizards even a single individual from each species provides genetic 
distance estimates that are quite useful for constructing dendrograms, provided 
that the genetic distances between species are sufficiently large. They also con- 
firmed NEI and ROYCHOUDHURY’S ( 1974) theoretical conclusion that a relatively 
reliable estimate of average heterozygosity can be obtained from a small number 
of individuals if a large number of loci are examined. In  this note I shall extend 
NEI and ROYCHOUDHURY’S (1974) study and present a further theoretical basis 
for GORMAN and RENZI’S unpublished observations. I will also present statistical 
methods for obtaining unbiased estimates of average heterozygosity and genetic 
distance. 

The first problem I would like to discuss is the magnitude of systematic bias 
introduced by a small sample size when the ordinary method of estimating 
average heterozygosity and genetic distance is used. Let pc be the frequency of 
the ith allele at a locus in a population and xi be the corresponding allele fre- 
quency in a sample from the population. The population heterozygosity at this 
locus is = 1 - ~ p f ,  where 2 stands €or summation over all alleles. The average 
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heterozygosity per locus (H) is defined as the mean of f over all structural loci 
in the genome. Theoretically, we assume that there are an infinite number of 
structural loci. We are then interested in estimating H by surveying r loci and n 
(diploid) individuals per locus. 'Thus, there are two sampling processes involved, 
i.e., sampling of loci from the genome and sampling of genes (2n genes) from 
the population at each locus. We assume that each of these samplings is con- 
ducted at random. Usually, H is estimated by a sample average heterozygosity, 
I?,, which is the average of 1 - Ex: over the r loci studied. Under the assumption 
of multinomial sampling of genes. the expectation of EX,' for a particular locus is 
given by Ep; f (1 - X p t ) / 2 n  (e.g., CROW and KIMURA 1970). Therefore, the 
expectation of A, is 

where E, and E,  are the expectation operators with respect to the distribution of 
f among loci and the multinomial distribution of si, respectively. 

For a single locus, an unbiased estimate of f is given by 

h = 2n( l  - 22:)/(212 - 1) , 
whereas the corresponding unbiased estimate of H is 

H= hk/r , 
k=l (3) 

where hk is the value of h for the kth locus. Here n may vary from locus to locus. 
The estimate (3) generally has a larger expected squared deviation from H than 
I?, (NEI and ROYCHOUDHURY 1974; MITRA 1976), but if a few individuals are 
studied for a large number of loci, the systematic bias in (1) seems to be much 
more serious. NEI and ROYCHOUDHURY (1974) were aware of this bias, but did 
not particularly recommend formula ( 3 ) ,  since the sample size employed at 
that time was generally large. 

The ordinary estimate of genetic distance also has a systematic bias. Let p i  
and qi be the frequencies of the ith allele in populations X and Y ,  respectively, 
and xi and yi be the corresponding sample allele frequencies. NEI'S (1972) 
genetic (standard) distance is defined as 

where Gx, Gy, and GxY are the means of x p t  , xq: , and zpiqi over all loci in the 
genome, respectively. The usual method of estimating D is to replace population 
gene identities, Gx, Gy, and GXY, by sample gene identities, Jx, Jy, and Jxy, which 
are the averages of EX:, zy:, and ~ s i y i  over the I loci studied, respectively. 
Namely, it is estimated by 0, = --In [ J x Y / v ' J x J y ] .  When r is sufficiently large, 
the expectation of b, is given by 

- 
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EgEs(bl) =: - l n [ E , ( J x Y ) / ~ ~ H ) E s ( J Y ) ]  (LI and NEI 1975) 

where nx and ny are the numbers of individuals sampled from population X and 
Y ,  respectively, and (1 - GB)/(2nXGK) and (1 - Gy)/(2nyGy) are assumed 
to be small compared with unity, which is true in almost all cases. Here E,  (D,) 
is the operator of taking the expectation of D, for r (given) loci with respect to 
the multinomial samplings of genes, whereas E, refers to taking the expectation 
of E,  (B1) with respect to sampling of T loci from the genome. Since average het- 
erozygosity ( H  = 1 - G) is generally 0.2 o r  less, the bias introduced by a small 
sample size in D, is of the same order of magnitude as that for A,. However, Dl 
tends to give an  overestimate of D, rather than an underestimate. I t  is noted that 
when D = 0, Gx = G, = G, and nx = ny = n, E (Dl) is approximately (1 - G) / 
(2nG). Namely, even if the two populations are genetically identical with each 
other, the sample genetic distance can be larger than 0 when the sample size is 
small. NEI (1973) has called this spurious distance. 

I n  many lizard species, the average heterozygosity is of the order of 0.06 
( GORMAN and RENZI, unpublished). Therefore, the expected magnitude of the 
bias when a single individual is sampled from each of the two species to be com- 
pared is about 0.03. This magnitude of bias is not important if D is large, say 
more than 0.15, but becomes serious when D is very small. On the other hand, 
if nx and nr are 100, the expected bias is about 0.0003, which is generally 
negligible. 

An unbiased estimate of D may be obtained by substituting the unbiased esti- 
mates of Gx and Gy for Jx and JE. Namely, 

where ex and GF are the averages of (2nxJx - 1)/(2nx - 1) and (2nyJy - 1)/  
(2ny - 1) over the r loci studied, respectively, and G.YY = Jx,. It is noted that, 
unlike D,, b can be negative, though its absolute value should not be large. This 
negative value is caused by sampling error and will occur only very rarely if 
nx and ny are large. A negative value of D creates a problem in constructing a 
dendrogram. I suggest that all negative values of b should be replaced by 0 in 
this case. 

Let us now consider the sampling variance of the unbiased estimate of aver- 
age heterozygosity. It should be noted that this variance consists of two 
components, i.e., interlocus variance and intralocus variance ( NEI and ROY- 
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CHOUDHURY 1974). The former arises because of the fact that population het- 
erozygosity varies greatly from locus to locus. This is caused by the evolutionary 
forces such as mutation, selection, and random genetic drift. The intralocus 
variance is generated primarily by the process of sampling a finite number of 
genes from the population. The underlying statistical model for the decomposi- 
tion of the total sampling variance is as follows: For the kth locus, the observed 
heterozygosity (the unbiased estimate: 121, = 2n (1 - 2 2 )  / (2n  - 1) ) may be 
written as 

where & is the population heterozygosity (1 - Zp:)  , and s k  is the sampling error 
with mean = 0 and variance V, ( h k )  . Therefore, the variance, V (h )  , of h k  over 
all loci (the entire genome) is 

where V (h )  is the variance of & and V,(h) is the expectation of V,(hk) over 
all loci. Here we have assumed that there are linkage equilibria among different 
loci and genes are sampled independently at each locus. Note that the variance 
components in (8) are slightly different from those of NEI and ROYCHOUDHURY 
(1974), since they considered the sample heterozygosity, 1 - Zz;. If we note 
that the unbiased estimate (A )  of H is a simple average of heterozygosities for 
all individual loci, its variance is given by 

5 

V(r i )  =V(h)/r . (9) 

To evaluate the effect of the number of individuals on the accuracy of the 
estimate of average heterozygosity, we have to know the relative magnitudes of 
Vs ( h )  and V, (h) in (8). To get a rough idea, I consider an equilibrium popula- 
tion in which the effects of mutation and random genetic drift are balanced with 
the same mutation rate for all loci, assuming no selection. If we use the infinite- 
allele model, the interlocus variance is given by V (h) = 2M/(  M + 1 ) ( M  + 2 )  
( M  4- 3), where M =  NU, in which N and U are the effective population size 
and the mutation rate per locus per generation, respectively ( WATTERSON 1974; 
STEWART 1976; LI and NEI 1975). In  practice, the value of V (h) seems to be 
slightly larger than that given by the above formula presumably because of 
interlocus variation in mutation rate and some other effects (NEI et al. 1976), 
but for our purpose it does not matter. (The stepwise mutation model gives a 
smaller interlocus variance than the infinite-allele model.) The intralocus vari- 
ance of the unbiased estimate of heterozygosity for a locus may be obtained by 
modifying NEI and ROYCHOUDHURY'S (1974) formula for the variance of 
1 - Ex2. It becomes 

5 

5 
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The expectation of this variance over all loci can be obtained by evaluating the 
expectations of Xp:, (E@) 2, and Xp: with respect to the allele frequency distribu- 
tions. These expectations have been evaluated by LI and NEI (1975). Using 
their results, we have 

(11) 
2 M ( M f 4 )  + 8(n- l )M 

2n(2n-I)(M+l)(M-k2)(M+3) * 
V,(h) = 

The values of V (h )  and V ,  (h)  for various values of M and n are given in 
Table 1. It  is clear that for n = 1, V ,  (h)  is larger than V (h)  but V ,  (h )  rapidly 
decreases as n increases. With n = 10, V ,  ( h )  is nearly one-tenth of V (h )  . This 
clearly indicates that in order to reduce the sampling error of average hetero- 
zygosity we must examine a large number of loci rather than a large number 
of individuals per locus. Of course, if one wants to study not only the average 
heterozygosity but also the allele frequency distribution for each locus, he must 
examine a large number of individuals. 

However, some warning against using an extremely small number of indi- 
viduals should be mentioned. The above argument assumes that a large number 
of loci are available for study. In practice, technical difficulties often limit the 
number of loci studied. In fact, less than 30 loci were studied in most recent 
protein surveys. This number is small; ideally, more than 50 loci should be used 
to obtain a reliable estimate of average heterozygosity for the total genome. If 
this cannot be done technically, a large number of individuals studied per locus 
still helps to reduce the standard error of average heterozygosity. In Table 1, for 
example, if H is 0.167, the expected intralocus variance ( V ,  ( h )  ) is 0.09943 for 
n = 1. Thus, if one individual is examined for 25 loci, the expected standard 

s 
3 

s 

TABLE 1 

Effects of sample size (n = number of indiuiduals) on the intralocus variance 
[V,(h)] of heierozygosity 

V ,  (h) 
M H V s  (h) n=l n = 2  n=lO n=U) n=50 

0.02 0.020 0.00630 0.01292 0.00430 0.00068 0.0033 0.00.013 
0.06 0.057 0.01694 0.03646 0.011206 0.00189 0.00092 0.00036 
0.1 0.091 0.02539 0.05725 0.01885 0.W95 0.00143 0.00056 
0.2 0.167 0.039% 0.09943 0.03235 0.043601 0.010243 0.00095 
0.4 0.286 0.05002 0.15406 0.04902 0.00744 0.00361 0.00142 

M = 4Nu. H M/(1 + M )  = the expected heterozygosity. V (h)  = interlocus variance d 
3 heterozygosity. 
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error of average heterozygosity estimate becomes (0.009943/25) % = 0.06, neg- 
lecting the effect of interlocus variation. This is more than a third of H. On the 
other hand, if 50 individuals are studied for 25 loci, it becomes 0.0062, which 
is 1/27 of H. 

A similar study can be made about the effect of the number of individuals on 
the estimate of genetic distance. For this purpose, however, it is simpler to work 
with the minimum distance rather than the standard distance (see NEI and 
ROYCHOUDHURY 1974). The minimum distance for the kth locus is defined as 
5i, = (Zp: 4- Zq:)/2 - Zpiqi,  and the distance for all loci (Dm) is the arithmetic 
mean of this quantity. An unbiased estimate of single locus genetic distance is 
given by 

2nxxz: - 1 2nyZyq - 1 

2(2nz- 1) 2(2ny- 1 )  dk + - ZXiYi 7 (12) 

whereas the unbiased estimate o'f D,, is given by 

As with h k ,  dk may be written as dk = & 3. sk, where sk is the sampling error 
with mean = 0 and variance V ,  ( d k )  . Again modifying NEI and ROYCHOUDHURY'S 
(1974) formula, the intralocus variance, V ,  ( d k ) ,  becomes 

The variance osf dk over all loci is 

V ( d )  = 7 ( d )  + V , ( d )  . 
where V s  (d )  and V, ( d )  are the variance of & and the mean of V ,  ( d k )  over loci, 
respectively. Evaluation of the exact value of V ( d )  is complicated, but it can 
be shown that it increases with increase of the mean distance, c k  D, (LI and 
NEI 1975). If the mutation-drift balance is maintained in each of the two popula- 
tions throughout the evolutionary process with 4Nv = 0.1, then V ( d )  is 0.00410 
for D,= 0.018 and 0.11156 for D, = 0.168. On the other hand, V , ( d )  is of the 
same order of magnitude as V, ( h )  when D, is small but decreases slowly as D, 

s 

J 
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increases. (The property of V,(d) is virtually the same as that of the intralocus 
variance of sample minimum distance, which was studied by NEI and ROY- 
CHOUDHURY 1974). Therefore, it is clear that if D, is as large as 0.168 and a 
large number of loci are examined, the number of individuals per locus can be 
very small. On the other hand, if D, is as small as 0.018, a considerable number 
of individuals must be examined. Needless to say, the variance of S, is given 

The sampling variance of the unbiased estimate of standard genetic distance 
(B) and its components can be obtained again by modifying NEI and ROY- 
CHOUDHURY’S (1974) formulae. That is, if we replace I,, I=, and J X p  in their 
formulae (22) and (23)  by Gx, Gy, and G,,, respectively, they are immediately 
obtained. However, I shall not present the results here, since they are too com- 
plicated. (They are incorporated inte our new computer program.) On the other 
hand, the relative values of the components corresponding to V (d )  and V ,  ( d )  
in (15) can be evaluated by LI and NEI’S (1975) method. The results obtained 
are virtually the same as those for Dl, and thus support GORMAN and RENZI’S 
(unpublished) empirical finding. It should be noted, however, that the number 
of individuals to be examined depends also on the level of heterozygosity (Table 
1 ) . More individuals should be examined when heterozygosity is high than when 
it is low. 

When a dendrogram for a group of species is constructed from genetic distance 
estimates, the reliability of the topology of the dendrogram depends on the dif- 
ferences in genetic distance among different pairs of species. If these differences 
are small, the genetic distances must be estimated accurately. Namely, a con- 
siderable number of individuals should be examined fo r  each locus. On the other 
hand, if the differences are large, even a single individual may be sufficient for 
obtaining the correct topology of a dendrogram. In fact, this is exactly what 
GORMAN and RENZI (unpublished) observed with the Anolis roquet and A. 
bimaculatus group species. Another factor that affects the dendrogram is the 
level of heterozygosity. As discussed above, the standard error of genetic distance 
is large when average heterozygosity is high. Thus, in organisms with average 
heterozygosity higher than 0.1 a relatively large number of individuals should 
be examined to construct a reliable dendrogram. 

Our formulae for obtaining unbiased estimates of average heterozygosity and 
genetic distance apply to any sample size and are superior to sample average 
heterozygosity and genetic distance, as long as many loci are used. However, 
the difference between the biased and unbiased estimators is very small when 
the number of individuals used is large, say more than 50. A computer program 
for obtaining the unbiased estimates of average heterozygosity and (standard) 
genetic distance and their standard errors is available by writing to the author. 

I would like to  thank GEORGE C. GORMAN for showing me his unpublished manuscript. This 
work was supported by grants from the National Science Foundation and the Public Health 
Service. 

by V ( 4 b .  
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