
A tutorial for Discriminant Analysis of Principal

Components (DAPC) using adegenet 1.3-2

Thibaut Jombart

November 10, 2011

Abstract

This vignette provides a tutorial for applying the Discriminant
Analysis of Principal Components (DAPC [1]) using the adegenet package
[2] for the R software [3]. This methods aims to identify and describe
genetic clusters, although it can in fact be applied to any quantitative data.
We illustrate how to use find.clusters to identify clusters, and dapc to
describe the relationships between these clusters. More advanced topics
are then introduced, such as advanced graphics, assessing the stability of
DAPC results and using supplementary individuals.

1

Contents

1 Introduction 3

2 Identifying clusters using find.clusters 3
2.1 Rationale . 3
2.2 In practice . 4
2.3 How many clusters are there really in the data? 8

3 Describing clusters using dapc 9
3.1 Rationale . 9
3.2 In practice . 9
3.3 Customizing DAPC scatterplots 12
3.4 Interpreting variable contributions 17
3.5 Interpreting group memberships 20

4 On the stability of group membership probabilities 25
4.1 When and why group memberships can be unreliable 25
4.2 Using the a-score . 28

5 Using supplementary individuals 31
5.1 Rationale . 31
5.2 In practice . 32

2

1 Introduction

Investigating genetic diversity using multivariate approaches relies on finding
synthetic variables built as linear combinations of alleles (i.e. new-variable =
a1allele1+a2allele2+... where a1, a2 etc. are real coefficients) and which reflect as
well as possible the genetic variation amongst the studied individuals. However,
most of the time we are not only interested in the diversity amongst individuals,
but also and possibly more so in the diversity between groups of individuals.
Typically, one will be analysing individual data to identify populations, or more
largely genetic clusters, and then describe these clusters.

A problem occuring in traditional methods is they usually focus on the
entire genetic variation. Genetic variability can be decomposed using a standard
multivariate ANOVA model as:

total variance = (variance between groups) + (variance within groups)

or more simply, denoting X the data matrix:

V AR(X) = B(X) + W (X)

Usual approaches such as Principal Component Analysis (PCA) or Principal
Coordinates Analysis (PCoA / MDS) focus on V AR(X). That is, they only
describe the global diversity, possibly overlooking differences between groups.
On the contrary, DAPC optimizes B(X) while minimizing W (X): it seeks
synthetic variables, the discriminant functions, which show differences between
groups as best as possible while minimizing variation within clusters.

2 Identifying clusters using find.clusters

2.1 Rationale

DAPC in itself requires prior groups to be defined. However, groups are often
unknown or uncertain, and there is a need for identifying genetic clusters before
describing them. This can be achieved using k-means, a clustering algorithm
which finds a given number (say, k) of groups maximizing the variation between
groups, B(X). To identify the optimal number of clusters, k-means is run
sequentially with increasing values of k, and different clustering solutions are
compared using Bayesian Information Criterion (BIC). Ideally, the optimal
clustering solution should correspond to the lowest BIC. In practice, the ’best’
BIC is often indicated by an elbow in the curve of BIC values as a function of
k.

While k-means could be performed on the raw data, we prefer running
the algorithm after transforming the data using PCA. This transformation
has the major advantage of reducing the number of variables so as to speed
up the clustering algorithm. Note that this does not imply a necessary loss
of information since all the principal components (PCs) can be retained, and

3

therefore all the variation in the original data. In practice however, a reduced
number of PCs is often sufficient to identify the existing clusters, while making
the analysis essentially instantaneous.

2.2 In practice

Identification of the clusters is achieved by find.clusters. This function first
transforms the data using PCA, asking the user to specify the number of retained
PCs interactively unless the argument n.pca is provided. Then, it runs k-means
algorithm (function kmeans from the stats package) with increasing values of k,
unless the argument n.clust is provided, and computes associated summary
statistics (by default, BIC). See ?find.clusters for other arguments.

find.clusters is a generic function with methods for data.frame, objects
with the class genind (usual genetic markers) and genlight (genome-wide SNP
data). Here, we illustrate its use using a toy dataset simulated in [1], dapcIllus:

> library(adegenet)
> data(dapcIllus)
> class(dapcIllus)

[1] "list"

> names(dapcIllus)

[1] "a" "b" "c" "d"

dapcIllus is a list containing four datasets; we shall only use the first one:

> x <- dapcIllus$a
> x

#####################
Genind object
#####################

- genotypes of individuals -

S4 class: genind
@call: read.fstat(file = file, missing = missing, quiet = quiet)

@tab: 600 x 140 matrix of genotypes

@ind.names: vector of 600 individual names
@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 140 columns of @tab
@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

@other: - empty -

x is a dataset of 600 individuals simulated under an island model (6 islands) for
30 microsatellite markers. We use find.clusters to identify clusters, although
true clusters are, in this case, known (and accessible using pop(x)). We specify
that we want to evaluate up to k = 40 groups (max.n.clust=40):

4

> grp <- find.clusters(x, max.n.clust=40)

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

0 20 40 60 80 100

20
40

60
80

10
0

Variance explained by PCA

Number of retained PCs

C
um

ul
at

iv
e

va
ria

nc
e

(%
)

The function displays a graph of cumulated variance explained by the
eigenvalues of the PCA. Apart from computational time, there is no reason
for keeping a small number of components; here, we keep all the information,
specifying to retain 200 PCs (there are actually less PCs —around 110—, so
all of them are kept).

Then, the function displays a graph of BIC values for increasing values of k:

5

●

●

●

●

●

● ● ● ● ●
● ●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

0 10 20 30 40

11
00

11
50

12
00

12
50

Value of BIC
versus number of clusters

Number of clusters

B
IC

This graph shows a clear decrease of BIC until k = 6 clusters, after which BIC
increases. In this case, the elbow in the curve also matches the smallest BIC,
and clearly indicates 6 clusters should be retained. In practice, the choice is
often trickier to make for empirical dataset.

The output of find.clusters is a list:

> names(grp)

[1] "Kstat" "stat" "grp" "size"

> head(grp$Kstat, 8)

NULL

> grp$stat

NULL

> head(grp$grp, 10)

001 002 003 004 005 006 007 008 009 010
3 3 3 2 3 3 3 3 3 3

Levels: 1 2 3 4 5 6

6

> grp$size

[1] 97 105 98 99 102 99

The components are respectively the chosen summary statistics (here, BIC)
for different values of k (slot Kstat), the selected number of clusters and the
associated BIC (slot stat), the group memberships (slot grp) and the group
sizes (slot size). Here, since we know the actual groups, we can check how well
they have been retrieved by the procedure. Actual groups are accessed using
pop:

> table(pop(x), grp$grp)

1 2 3 4 5 6
1 0 3 97 0 0 0
2 0 1 0 99 0 0
3 2 0 0 0 0 98
4 0 0 0 0 100 0
5 95 2 1 0 2 0
6 0 99 0 0 0 1

> table.value(table(pop(x), grp$grp), col.lab=paste("inf", 1:6), row.lab=paste("ori", 1:6))

ori 1

ori 2

ori 3

ori 4

ori 5

ori 6

in
f 1

in
f 2

in
f 3

in
f 4

in
f 5

in
f 6

 10 30 50 70 90

Rows correspond to actual groups (”ori”), while columns correspond to inferred
groups (”inf”). Here, we can see that original groups have nearly been perfectly
identified by the method.

7

2.3 How many clusters are there really in the data?

Although the most frequently asked when trying to find clusters in genetic
data, this question is equally often meaningless. Clustering algorithms help
making a caricature of a complex reality, which is most of the time far from
following known population genetics models. Therefore, we are rarely looking
for actual panmictic populations from which the individuals have been drawn.
Genetic clusters can be biologically meaningful structures and reflect interesting
biological processes, but they are still models.

A slightly different but probably more meaningful question would be: ”How
many clusters are useful to describe the data?”. A fundamental point in this
question is that clusters are merely tools used to summarise and understand
the data. There is no longer a ”true k”, but some values of k are better, more
efficient summaries of the data than others. For instance, in the following case:

●

●

●

●

●

●

●

●

●

● ●

●
●

●
● ●

● ● ● ● ● ●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

10
00

12
00

14
00

16
00

Value of BIC
versus number of clusters

Number of clusters

B
IC

, the concept of ”true k” is fairly hypothetical. This does not mean that
clutering algorithms should necessarily be discarded, but surely the reality is
more complex than a few clear-cut, isolated populations. What the BIC decrease
says is that 10-20 clusters would provide useful summaries of the data. The
actual number retained is merely a question of personnal taste.

8

3 Describing clusters using dapc

3.1 Rationale

DAPC aims to provide an efficient description of genetic clusters using a
few synthetic variables. These are constructed as linear combinations of the
original variables (alleles) which have the largest between-group variance and
the smallest within-group variance. Coefficients of the alleles used in the linear
combination are called loadings, while the synthetic variables are themselves
referred to as discriminant functions.

Moreover, being based on the Discriminant Analysis, DAPC also provides
membership probabilities of each individual for the different groups based on the
retained discriminant functions. While these are different from the admixture
coefficients of software like STRUCTURE, they can still be interpreted as
proximities of individuals to the different clusters. Membership probabilities
also provide indications of how clear-cut genetic clusters are. Loose clusters
will result in fairly flat distributions of membership probabilities of individuals
across clusters, pointing to possible admixture.

Lastly, using the allele loadings, it is possible to represent new individuals
(which have not participated to the analysis) onto the factorial planes, and
derive membership probabilities as welll. Such individuals are referred to as
supplementary individuals.

3.2 In practice

DAPC is implemented by the function dapc, which first transforms the data
using PCA, and then performs a Discriminant Analysis on the retained principal
components. Like find.clusters, dapc is a generic function with methods for
data.frame, and objects with the class genind (usual genetic markers) and
genlight (genome wide SNP data).

We run the analysis on the previous toy dataset, using the inferred groups
stored in grp$grp:

> dapc1 <- dapc(x, grp$grp)

The method displays the same graph of cumulated variance as in
find.cluster. However, unlike k-means, DAPC can benefit from not using
too many PCs. Indeed, retaining too many components with respect to the
number of individuals can lead to over-fitting and unstability in the membership
probabilities returned by the method (see section below about the stability of
membership probabilities).

9

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

0 20 40 60 80 100

20
40

60
80

10
0

Variance explained by PCA

Number of retained PCs

C
um

ul
at

iv
e

va
ria

nc
e

(%
)

The bottomline is therefore retaining a few PCs without sacrificing too much
information. Here, we can see that little information is gained by adding PCs
after the first 40. We therefore retain 40 PCs.

Then, the method displays a barplot of eigenvalues for the discriminant
analysis, asking for a number of discriminant functions to retain (unless
argument n.da is provided).

10

Discriminant analysis eigenvalues

Linear Discriminants

F
−

st
at

is
tic

0
20

0
40

0
60

0
80

0

For small number of clusters, all eigenvalues can be retained since all
discriminant functions can be examined without difficulty. Whenever more
(say, tens of) clusters are analysed, it is likely that the first few dimensions will
carry more information than the others, and only those can then be retained
and interpreted.

The object dapc1 contains a lot of information:

> dapc1

###
Discriminant Analysis of Principal Components
###

class: dapc
$call: dapc.genind(x = x, pop = grp$grp, n.pca = 40, n.da = 100)

$n.pca: 40 first PCs of PCA used
$n.da: 5 discriminant functions saved
$var (proportion of conserved variance): 0.915

$eig (eigenvalues): 874.1 703.2 541.5 447.9 365.3 vector length content
1 $eig 5 eigenvalues
2 $grp 600 prior group assignment
3 $prior 6 prior group probabilities
4 $assign 600 posterior group assignment
5 $pca.cent 140 centring vector of PCA
6 $pca.norm 140 scaling vector of PCA
7 $pca.eig 109 eigenvalues of PCA

data.frame nrow ncol content
1 $tab 600 40 retained PCs of PCA
2 $means 6 40 group means
3 $loadings 40 5 loadings of variables
4 $ind.coord 600 5 coordinates of individuals (principal components)

11

5 $grp.coord 6 5 coordinates of groups
6 $posterior 600 6 posterior membership probabilities
7 $pca.loadings 140 40 PCA loadings of original variables
8 $var.contr 140 5 contribution of original variables

For details about this content, please read the documentation (?dapc).
Essentially, the slots ind.coord and grp.coord contain the coordinates of
the individuals and of the groups used in scatterplots. Contributions of
the alleles to each discriminant function are stored in the slot var.contr.
Eigenvalues, corresponding to the ratio of the variance between groups over
the variance within groups for each discriminant function, are stored in eig.
Basic scatterplots can be obtained using the function scatterplot:

> scatter(dapc1)

 1
 2

 3

 4

 5

 6

 1
 2

 3

 4

 5

 6

DA eigenvalues

The obtained graph represents the individuals as dots and the groups as inertia
ellipses. Eigenvalues of the analysis are displayed in inset. These graphs are
fairly easy to customize, as shown below.

3.3 Customizing DAPC scatterplots

DAPC scatterplots are the main result of DAPC. It is therefore essential to
ensure that information is displayed efficiently, and if possible to produce
pretty figures. Possibility are almost unlimited, and here we just illustrate a
few possibilities offered by scatter. Note that scatter is a generic function,

12

with a dedicated method for objects produced by dapc. Documentation of this
function can be accessed by typing ?scatter.dapc.

We illustrate some graphical possibilities trying to improve the display of
the analysis presented in the previous section. While the default background
(grey) allows to visualize rainbow colors (the default palette for the groups)
more easily, it is not so pretty and is probably better removed for publication
purpose. We also move the inset to a more appropriate place where it does not
cover individuals, and use different symbols for the groups.

> scatter(dapc1, posi.da="bottomright", bg="white", pch=17:22)

 1
 2

 3

 4

 5

 6

 1
 2

 3

 4

 5

 6

DA eigenvalues

This is still not entirely satisfying: we need to define other colors more visible
over a white background, and we can remove the segments linking the points to
their ellipses:

> myCol <- c("darkblue","purple","green","orange","red","blue")
> scatter(dapc1, posi.da="bottomright", bg="white", pch=17:22, cstar=0, col=myCol, scree.pca=TRUE, posi.pca="bottomleft")

13

 1
 2

 3

 4

 5

 6

 1
 2

 3

 4

 5

 6

DA eigenvaluesPCA eigenvalues

Another possibility is remove the labels within the ellipses and add a legend to
the plot. We also use the same symbol for all individuals, but use bigger dots
and transparent colours to have a better feel for the density of individuals on
the factorial plane.

> scatter(dapc1, scree.da=FALSE, bg="white", pch=20, cell=0, cstar=0, col=myCol, solid=.4,
+ cex=3,clab=0, leg=TRUE, txt.leg=paste("Cluster",1:6))

14

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

We can also add a minimum spanning tree based on the (squared) distances
between populations within the entire space. This allows one to bear in mind
the actual proximities between populations inside the entire space, which are not
always well represented in susbsets of discriminant functions of lesser rank. We
also indicate the centre of each group with crosses. Lastly, we remove the DAPC
eigenvalues, not very useful in this case, and replace them manually by a graph
of PCA eigenvalues retained in dimension-reduction step (retained eigenvalues
in black, similar to using scree.pca=TRUE).

> scatter(dapc1, ratio.pca=0.3, bg="white", pch=20, cell=0, cstar=0, col=myCol, solid=.4,
+ cex=3, clab=0, mstree=TRUE, scree.da=FALSE,
+ posi.pca="bottomright", leg=TRUE, txt.leg=paste("Cluster",1:6))
> par(xpd=TRUE)
> points(dapc1$grp.coord[,1], dapc1$grp.coord[,2], pch=4, cex=3, lwd=8, col="black")
> points(dapc1$grp.coord[,1], dapc1$grp.coord[,2], pch=4, cex=3, lwd=2, col=myCol)
> myInset <- function(){
+ temp <- dapc1$pca.eig
+ temp <- 100* cumsum(temp)/sum(temp)
+ plot(temp, col=rep(c("black","lightgrey"), c(dapc1$n.pca,1000)), ylim=c(0,100),
+ xlab="PCA axis", ylab="Cumulated variance (%)", cex=1, pch=20, type="h", lwd=2)
+ }
> add.scatter(myInset(), posi="bottomright", inset=c(-0.03,-0.01), ratio=.28, bg=transp("white"))

15

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

0 20 60 100

0
20

60
10

0

PCA axis

C
um

ul
at

ed
 v

ar
ia

nc
e

(%
)

Lastly, note that scatter can also represent a single discriminant function,
which is especially useful when only one of these has been retained (e.g. in the
case k = 2). This is achieved by plotting the densities of individuals on a given
discriminant function with different colors for different groups:

> scatter(dapc1,1,1, col=myCol, bg="white", scree.da=FALSE, legend=TRUE, solid=.4)

16

−10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

Discriminant function 1

D
en

si
ty

| || || || || || || || | || || | ||| | || || |||| | ||| ||| || |||| || ||| || || || ||| ||| ||| | | ||| || | || | ||| || | || |||| || || ||| | ||| | | || || |||| ||| || || || ||| | |||| || | | | || || ||| ||| | || | | ||||| | ||| || || || || || ||| || || ||| | | || ||| | ||| || ||| || |||| || || || || | ||| | | || | || || || |||| ||| || |||| | ||| | || | | || | |||| || | |||| | || | || || ||||| | | || | || ||| | || |||| ||| || || || || || ||||| ||| ||| || || | || || || ||| | | || |||| |||| |||| || ||| || || || ||| | || | || || ||| || ||| | || | ||| | ||| || || || || | | | | || || ||| || ||| || | || |||| || ||| ||| || || |||| ||| | || || || | || ||| || || ||| | | || | |||||| || || | ||| |||| ||| || || | || | |||| || || | || || | ||||| || || | ||| || |||| ||| ||| || || |||| | ||||| || | || || || || |||| ||| ||||| || ||||||| || || || ||| ||| || || ||||||| || ||

1
2
3
4
5
6

3.4 Interpreting variable contributions

In DAPC, the variable actually analyzed are principal components of a PCA.
Loadings of these variables are generally uninformative, since PCs themselves
do not all have straightforward interpretations. However, we can also compute
contributions of the alleles, which can turn out to be very informative. In
general, there are many alleles and their contribution is best plotted for a single
discriminant function at a time.

Variable contributions are stored in the var.contr slot of a dapc object.
They can be plotted using loadingplot. We illustrate this using the seasonal
influenza dataset H3N2, which contains 1903 isolates genotyped for 125 SNPs
located in the hemagglutinin segment (see ?H3N2):

> data(H3N2)
> H3N2

#####################
Genind object
#####################

- genotypes of individuals -

S4 class: genind
@call: .local(x = x, i = i, j = j, drop = drop)

@tab: 1903 x 334 matrix of genotypes

@ind.names: vector of 1903 individual names

17

@loc.names: vector of 125 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 334 columns of @tab
@all.names: list of 125 components yielding allele names for each locus
@ploidy: 1
@type: codom

Optionnal contents:
@pop: - empty -
@pop.names: - empty -

@other: a list containing: x xy epid

> pop(H3N2) <- H3N2$other$epid
> dapc.flu <- dapc(H3N2, n.pca=30,n.da=10)

The first discriminant function shows the temporal evolution of the influenza
virus, while the second one shows the originality of 2006 strains.

> myPal <- colorRampPalette(c("blue","gold","red"))
> scatter(dapc.flu, col=transp(myPal(6)), scree.da=FALSE, cell=1.5, cex=2, bg="white",cstar=0)

 2001
 2002

 2003

 2004
 2005

 2006

 2001
 2002

 2003

 2004
 2005

 2006

We can assess which alleles most highlight the originality of 2006 using
loadingplot:

> set.seed(4)
> contrib <- loadingplot(dapc.flu$var.contr, axis=2, thres=.07, lab.jitter=1)

18

0.
00

0.
05

0.
10

0.
15

0.
20

Loading plot

Variables

Lo
ad

in
gs 399.c

399.t

906.c
906.t

temp is a list invisibly returned by loadingplot which contains the most
contributing alleles (i.e., contributions above a given threshold – argument
threshold). In this case, SNPs 906 and 399 reflect most the temporal evolution
of the virus. We can look into their allele frequencies over 2002-2006:

> temp <- seploc(H3N2)
> snp906 <- truenames(temp[["906"]])$tab
> snp399 <- truenames(temp[["399"]])$tab
> freq906 <- apply(snp906, 2, function(e) tapply(e, pop(H3N2), mean, na.rm=TRUE))
> freq399 <- apply(snp399, 2, function(e) tapply(e, pop(H3N2), mean, na.rm=TRUE))
> freq906

906.c 906.t
2001 0.000000000 1.0000000
2002 0.000000000 1.0000000
2003 0.000000000 1.0000000
2004 0.000000000 1.0000000
2005 0.002155172 0.9978448
2006 0.616071429 0.3839286

> freq399

399.c 399.t
2001 0.000000000 1.0000000
2002 0.000000000 1.0000000
2003 0.000000000 1.0000000
2004 0.001848429 0.9981516
2005 0.002079002 0.9979210
2006 0.357142857 0.6428571

19

> par(mfrow=c(1,2), mar=c(5.1,4.1,4.1,.1),las=3)
> matplot(freq906, pch=c("a","c"), type="b",xlab="year",ylab="allele frequency", xaxt="n", cex=1.5, main="SNP # 906")
> axis(side=1, at=1:6, lab=2001:2006)
> matplot(freq399, pch=c("c","t"), type="b", xlab="year",ylab="allele frequency", xaxt="n", cex=1.5, main="SNP # 399")
> axis(side=1, at=1:6, lab=2001:2006)

a a a a a

a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNP # 906

year

al
le

le
 fr

eq
ue

nc
y

c c c c c

c

20
01

20
02

20
03

20
04

20
05

20
06

c c c c c

c

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNP # 399

year

al
le

le
 fr

eq
ue

nc
y

t t t t t

t

20
01

20
02

20
03

20
04

20
05

20
06

In both cases, a new allele appeared in 2005 at a very low frequency, and
reached high or even dominant frequencies a year later. Irrespective of the
mecanism underlying these changes (drift or selection), this illustrates that in
seasonal influenza, specific nucleotides can undergo drastic changes within only
a couple of years.

3.5 Interpreting group memberships

Besides scatterplots of discriminant functions, group memberships of DAPC
can be exploited. Note that caution should be taken when interpreting
group memberships of a DAPC based on too many PCs, as there are risks
of overfitting the discriminant functions (see section below). But despite this
possible bias, group memberships can be used as indicators of how clear-cut
genetic clusters are. Note that this is most useful for groups defined by an
external criteria, i.e. defined biologically, as opposed to identified by k-means.
It is less useful for groups identified using find.clusters, since we expect
k-means to provide optimal groups for DAPC, and therefore both classifications
to be mostly consistent.

20

Membership probabilities are based on the retained discriminant functions.
They are stored in dapc objects in the slot posterior:

> class(dapc1$posterior)

[1] "matrix"

> dim(dapc1$posterior)

[1] 600 6

> round(head(dapc1$posterior),3)

1 2 3 4 5 6
001 0 0.000 1.000 0 0 0
002 0 0.000 1.000 0 0 0
003 0 0.000 1.000 0 0 0
004 0 0.984 0.016 0 0 0
005 0 0.000 1.000 0 0 0
006 0 0.000 1.000 0 0 0

Each row corresponds to an individual, each column to a group. This
information can be summarized using summary on the dapc object:

> summary(dapc1)

$n.dim
[1] 5

$n.pop
[1] 6

$assign.prop
[1] 0.9966667

$assign.per.pop
1 2 3 4 5 6

1.0000000 0.9904762 1.0000000 1.0000000 0.9901961 1.0000000

$prior.grp.size

1 2 3 4 5 6
97 105 98 99 102 99

$post.grp.size

1 2 3 4 5 6
97 105 99 99 101 99

The slot assign.per.pop indicates the proportions of successful reassignment
(based on the discriminant functions) of individuals to their original clusters.
Large values indicate clear-cut clusters, while low values suggest admixed
groups.

This information can also be visualized using assignplot (see ?assignplot

for display options); here, we choose to represent only the first 50 individuals to
make the figure readable:

21

> assignplot(dapc1, subset=1:50)

Clusters

1 2 3 4 5 6

050
049
048
047
046
045
044
043
042
041
040
039
038
037
036
035
034
033
032
031
030
029
028
027
026
025
024
023
022
021
020
019
018
017
016
015
014
013
012
011
010
009
008
007
006
005
004
003
002
001

This figure is the simple graphical translation of the posterior table above.
Heat colors represent membership probabilities (red=1, white=0); blue crosses
represent the prior cluster provided to DAPC. Here in most individuals, DAPC
classification is consistent with the original clusters (blue crosses are on red
rectangles), except for one discrepancy in individual 21, classified in group 1
while DAPC would assign it to group 3. Such figure is particularly useful when
prior biological groups are used, as one may infer admixed or misclassified
individuals.

Note that this information can also be plotted in a STRUCTURE-like (!)
way using compoplot (see ?compoplot to customize the plot). We can plot
information of all individuals to have a global picture of the clusters composition.

> compoplot(dapc1, posi="bottomright", txt.leg=paste("Cluster", 1:6), lab="", ncol=1, xlab="individuals")

22

individuals

m
em

be
rs

hi
p

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

We can also have a closer look at a subset of individuals; for instance, for the
first 50 individuals:

> compoplot(dapc1, subset=1:50, posi="bottomright", txt.leg=paste("Cluster", 1:6), lab="", ncol=2, xlab="individuals")

23

individuals

m
em

be
rs

hi
p

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 1
Cluster 2
Cluster 3

Cluster 4
Cluster 5
Cluster 6

Obviously, we can use the power of R to lead our investigation further. For
instance, which are the most ’admixed’ individuals? Let us consider as admixed
individuals having no more than 90% of probability of membership in a single
cluster:

> temp <- which(apply(dapc1$posterior,1, function(e) all(e<0.9)))
> temp

021 047 243 280
21 47 243 280

> compoplot(dapc1, subset=temp, posi="bottomright", txt.leg=paste("Cluster", 1:6), ncol=2)

24

02
1

04
7

24
3

28
0

m
em

be
rs

hi
p

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 1
Cluster 2
Cluster 3

Cluster 4
Cluster 5
Cluster 6

4 On the stability of group membership
probabilities

4.1 When and why group memberships can be unreliable

In DAPC, discriminant functions are linear combinations of variables (principal
components of PCA) which optimize the separation of individuals into pre-
defined groups. Based on the retained discriminant functions, it is possible to
derive group membership probabilities, which can be interpreted in order to
assess how clear-cut or admixed the clusters are. Unfortunately, retaining too
many PCs with respect to the number of individuals can lead to over-fitting
the discriminant functions. In such case, discriminant functions become so
”flexible” that they could discriminate almost perfectly any cluster. As a result,
membership probabilities can become drastically inflated for the best-fitting
cluster, resulting in apparent perfect discrimination.

This point can be illustrated using the microbov dataset (704 cattles of
15 breeds typed for 30 microsatellite markers). We first examine the % of
successful reassignment (i.e., quality of discrimination) for different numbers of
retained PCs. First, retaining 3 PCs during the dimension-reduction step, and
all discriminant functions:

25

> data(microbov)
> microbov

#####################
Genind object
#####################

- genotypes of individuals -

S4 class: genind
@call: genind(tab = truenames(microbov)$tab, pop = truenames(microbov)$pop)

@tab: 704 x 373 matrix of genotypes

@ind.names: vector of 704 individual names
@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 373 columns of @tab
@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

@other: a list containing: coun breed spe

> temp <- summary(dapc(microbov, n.da=100, n.pca=3))$assign.per.pop*100

> par(mar=c(4.5,7.5,1,1))
> barplot(temp, xlab="% of reassignment to actual breed", horiz=TRUE, las=1)

Borgou

Zebu

Lagunaire

NDama

Somba

Aubrac

Bazadais

BlondeAquitaine

BretPieNoire

Charolais

Gascon

Limousin

MaineAnjou

Montbeliard

Salers

% of reassignment to actual breed

0 20 40 60 80

26

We can see that some breeds are well discriminated (e.g. Zebu, Lagunaire, >
90%) while others are entirely overlooked by the analysis (e.g. Bretone Pie
Noire, Limousin, <10%). This is because too much genetic information is lost
when retaining only 3 PCs. We repeat the analysis, this time keeping 300 PCs:

> temp <- summary(dapc(microbov, n.da=100, n.pca=300))$assign.per.pop*100

> par(mar=c(4.5,7.5,1,1))
> barplot(temp, xlab="% of reassignment to actual breed", horiz=TRUE, las=1)

Borgou

Zebu

Lagunaire

NDama

Somba

Aubrac

Bazadais

BlondeAquitaine

BretPieNoire

Charolais

Gascon

Limousin

MaineAnjou

Montbeliard

Salers

% of reassignment to actual breed

0 20 40 60 80 100

We now obtain almost 100% of discrimination for all groups. Is this result
satisfying? Actually not. The number of PCs retained is so large that
discriminant functions could model any structure and virtually any set of
clusters would be well discriminated. This can be illustrated by running the
analysis using randomized groups:

> x <- microbov
> pop(x) <- sample(pop(x))
> temp <- summary(dapc(x, n.da=100, n.pca=300))$assign.per.pop*100

> par(mar=c(4.5,7.5,1,1))
> barplot(temp, xlab="% of reassignment to actual breed", horiz=TRUE, las=1)

27

Limousin

Montbeliard

Bazadais

Charolais

MaineAnjou

BlondeAquitaine

Gascon

Lagunaire

Somba

Borgou

Salers

Zebu

NDama

Aubrac

BretPieNoire

% of reassignment to actual breed

0 20 40 60 80

Groups have been randomised, and yet we still get very good discrimination.
There is therefore a trade-off between finding a space with a good power of
discrimination using DAPC, and retaining too many dimensions and cause over-
fitting.

4.2 Using the a-score

The trade-off between power of discrimination and over-fitting can be measured
by the a-score, which is simply the difference between the proportion of
successful reassignment of the analysis (observed discrimination) and values
obtained using random groups (random discrimination). It can be seen as the
proportion of successful reassignment corrected for the number of retained PCs.
It is implemented by a.score, which relies on repeating the DAPC analysis
using randomized groups, and computing a-scores for each group, as well as the
average a-score:

> dapc2 <- dapc(microbov, n.da=100, n.pca=10)
> temp <- a.score(dapc2)
> names(temp)

[1] "tab" "pop.score" "mean"

> temp$tab[1:5,1:5]

28

Borgou Zebu Lagunaire NDama Somba
sim.1 0.74 0.84 0.8235294 0.5666667 0.58
sim.2 0.76 0.72 0.8627451 0.5333333 0.78
sim.3 0.60 0.78 0.8627451 0.5000000 0.70
sim.4 0.64 0.74 0.8627451 0.5333333 0.70
sim.5 0.72 0.76 0.9607843 0.5000000 0.80

> temp$pop.score

Borgou Zebu Lagunaire NDama Somba
0.6380000 0.7420000 0.8509804 0.5166667 0.7180000

Aubrac Bazadais BlondeAquitaine BretPieNoire Charolais
0.4940000 0.8382979 0.3016393 0.4741935 0.5563636

Gascon Limousin MaineAnjou Montbeliard Salers
0.6640000 0.4280000 0.8653061 0.6733333 0.7720000

> temp$mean

[1] 0.6355187

The number of retained PCs can be chosen so as to optimize the a-score;
this is achived by optim.a.score:

> dapc2 <- dapc(microbov, n.da=100, n.pca=50)

> temp <- optim.a.score(dapc2)

●

●
●

● ●
●

1 5 10 15 20 25 30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of retained PCs

a−
sc

or
e

●

a−score optimisation − spline interpolation

Optimal number of PCs: 19

29

Since evaluating solutions for 1, 2, ... 100 retained PCs is unusefully computer-
intensive, as a first approximation the method evaluates a few numbers of
retained PCs in this range, and uses spline interpolation to approximate the
optimal number of PCs to retain. Then, one can evaluate all solutions within
a restrained range using the argument n.pca. For the microbov dataset,
we should probably retained between 10 and 30 PCs during the dimension-
reduction step.

We perform the analysis with 20 PCs retained, and then map the
membership probabilities as before:

> dapc3 <- dapc(microbov, n.da=100, n.pca=20)
> myCol <- rainbow(15)

> par(mar=c(5.1,4.1,1.1,1.1), xpd=TRUE)
> compoplot(dapc3, lab="", posi=list(x=12,y=-.01), cleg=.7)

m
em

be
rs

hi
p

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Borgou
Zebu
Lagunaire
NDama

Somba
Aubrac
Bazadais
BlondeAquitaine

BretPieNoire
Charolais
Gascon
Limousin

MaineAnjou
Montbeliard
Salers

And as before, we can investigate further admixed individuals, which we
arbitrarily define as those having no more than 0.5 probability of membership
to any group:

> temp <- which(apply(dapc3$posterior,1, function(e) all(e<0.5)))
> temp

30

AFBIBOR9511 FRBTAUB9062 FRBTAUB9070 FRBTAUB9078 FRBTAUB9225 FRBTBDA29851
9 233 241 249 265 329

FRBTBDA29856 FRBTBDA29879 FRBTBDA35248 FRBTBDA35256 FRBTBDA35259 FRBTBDA35267
334 354 361 363 365 368

FRBTBDA35278 FRBTBDA35281 FRBTBDA35877 FRBTBDA35941 FRBTBPN1906 FRBTBPN1913
372 374 382 386 405 409

FRBTBPN1915 FRBTCHA15957 FRBTGAS14183 FRBTGAS9173 FRBTGAS9200 FRBTLIM30832
411 422 477 498 520 543

FRBTLIM30839 FRBTLIM30855 FRBTMA25298 FRBTMBE1496 FRBTMBE1514 FRBTMBE1544
550 566 579 625 636 651

> lab <- pop(microbov)
> par(mar=c(8,4,5,1), xpd=TRUE)
> compoplot(dapc3, subset=temp, cleg=.6, posi=list(x=0,y=1.2),lab=lab)

B
or

go
u

A
ub

ra
c

A
ub

ra
c

A
ub

ra
c

A
ub

ra
c

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
lo

nd
eA

qu
ita

in
e

B
re

tP
ie

N
oi

re
B

re
tP

ie
N

oi
re

B
re

tP
ie

N
oi

re
C

ha
ro

la
is

G
as

co
n

G
as

co
n

G
as

co
n

Li
m

ou
si

n
Li

m
ou

si
n

Li
m

ou
si

n
M

ai
ne

A
nj

ou
M

on
tb

el
ia

rd
M

on
tb

el
ia

rd
M

on
tb

el
ia

rd

m
em

be
rs

hi
p

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Borgou
Zebu
Lagunaire
NDama

Somba
Aubrac
Bazadais
BlondeAquitaine

BretPieNoire
Charolais
Gascon
Limousin

MaineAnjou
Montbeliard
Salers

Admixture appears to be the strongest between a few breeds (Blonde
d’Aquitaine, Bretonne Pie-Noire, Limousine and Gascone). Some features are
fairly surprising; for instance, the last individual is fairly distant from its cluster,
but has almost 50% chances of being assigned to two other breeds.

5 Using supplementary individuals

5.1 Rationale

Statistically speaking, supplementary individuals are observations which do
not participate to constructing a model, but which we would like to predict
using a model fitted on other (”training”) data. In the context of DAPC,

31

we may know groups for most individuals, but some individuals could be of
unknown or uncertain group. In this case, we need to exclude individuals
from the analysis, and then project them as supplementary individuals onto
the discriminant functions. The only requirement for this operation is that
supplementary individuals have been typed for the same loci as the rest of the
dataset.

Technically, using supplementary individuals consists in transforming the
new data using the centring and scaling of the ”training data”, and then using
the same discriminant coefficients as for the contributing individuals to predict
the position of the new individuals onto the discriminant functions.

5.2 In practice

We will illustrate the practice of supplementary individuals using the cattle
breeds data previously analyzed (microbov dataset). We first split the dataset
into two parts: one used for the analysis, and one used as supplementary
individuals:

> data(microbov)
> set.seed(2)
> kept.id <- unlist(tapply(1:nInd(microbov), pop(microbov), function(e) sample(e, 20,replace=FALSE)))
> x <- microbov[kept.id]
> x.sup <- microbov[-kept.id]
> nInd(x)

[1] 300

> nInd(x.sup)

[1] 404

x is a genind containing the data to be analyzed; x.sup contains the
supplementary individuals.

We perform the DAPC of x, and use predict to predict results for the
supplementary individuals:

> dapc4 <- dapc(x,n.pca=20,n.da=15)
> pred.sup <- predict.dapc(dapc4, newdata=x.sup)
> names(pred.sup)

[1] "assign" "posterior" "ind.scores"

> head(pred.sup$assign)

[1] Borgou Borgou Borgou Borgou Borgou Borgou
15 Levels: Borgou Zebu Lagunaire NDama Somba Aubrac ... Salers

> pred.sup$ind.scores[1:5,1:3]

32

LD1 LD2 LD3
001 -3.896992 -5.288381 0.4570651
002 -2.445063 -4.422078 0.2134797
003 -4.692576 -2.717198 0.4914203
004 -4.919515 -2.317070 -0.2390356
005 -4.718570 -0.200391 -0.9196541

> round(pred.sup$posterior[1:5, 1:5],3)

Borgou Zebu Lagunaire NDama Somba
001 0.612 0.388 0 0.000 0.000
002 0.983 0.017 0 0.000 0.000
003 1.000 0.000 0 0.000 0.000
004 1.000 0.000 0 0.000 0.000
005 0.688 0.000 0 0.208 0.105

The list pred.sup contains all the predictions about the new data based on
the analysis stored in dapc4. The slot assign contains the assignment of
new individuals to groups; ind.scores contains the coordinates of the new
individuals on the discriminant functions; posterior contains the posterior
membership probabilities. We can visualize the information by different ways.
First, we can represent the new individuals using a scatterplot:

> col <- rainbow(length(levels(pop(x))))
> col.points <- transp(col[as.integer(pop(x))],.2)
> scatter(dapc4, col=col, bg="white", scree.da=0, pch="", cstar=0, clab=0, xlim=c(-10,10), legend=TRUE)
> par(xpd=TRUE)
> points(dapc4$ind.coord[,1], dapc4$ind.coord[,2], pch=20, col=col.points, cex=5)
> col.sup <- col[as.integer(pop(x.sup))]
> points(pred.sup$ind.scores[,1], pred.sup$ind.scores[,2], pch=15, col=transp(col.sup,.7), cex=2)
> add.scatter.eig(dapc4$eig,15,1,2, posi="bottomright", inset=.02)

Borgou
Zebu
Lagunaire
NDama
Somba
Aubrac
Bazadais
BlondeAquitaine
BretPieNoire
Charolais
Gascon
Limousin
MaineAnjou
Montbeliard
Salers

 Eigenvalues

33

Light dots and ellipses correspond to the original analysis, while more solid
squares indicate supplementary individuals. Results are fairly satisfying:

> mean(as.character(pred.sup$assign)==as.character(pop(x.sup)))

[1] 0.7549505

Around 75% of individuals have been assigned to their actual cluster. For more
details about which breed was assigned to which cluster, we can display the
contingency table of the actual cluster vs the inferred one:

> table.value(table(pred.sup$assign, pop(x.sup)), col.lab=levels(pop(x.sup)))

Borgou

Zebu
Lagunaire

NDama

Somba

Aubrac

Bazadais
BlondeAquitaine

BretPieNoire

Charolais

Gascon

Limousin
MaineAnjou

Montbeliard

Salers

B
or

go
u

Z
eb

u

La
gu

na
ire

N
D

am
a

S
om

ba

A
ub

ra
c

B
az

ad
ai

s

B
lo

nd
eA

qu
ita

in
e

B
re

tP
ie

N
oi

re

C
ha

ro
la

is

G
as

co
n

Li
m

ou
si

n

M
ai

ne
A

nj
ou

M
on

tb
el

ia
rd

S
al

er
s

 5 15 25

Columns correspond to actual clusters of the supplementary individuals, while
rows correspond to inferred clusters. Overall, groups are fairly well retrieved, but
we can notice that individuals of Blonde d’Aquitaine breed are poorly identified
compared to other breeds.

References

[1] Jombart T, Devillard S and Balloux, F (2010). Discriminant analysis
of principal components: a new method for the analysis of genetically
structured populations. BMC Genetics 11: 94.

34

[2] Jombart, T. (2008) adegenet: a R package for the multivariate analysis of
genetic markers. Bioinformatics 24: 1403-1405.

[3] R Development Core Team (2011). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0.

35

	Introduction
	Identifying clusters using find.clusters
	Rationale
	In practice
	How many clusters are there really in the data?

	Describing clusters using dapc
	Rationale
	In practice
	Customizing DAPC scatterplots
	Interpreting variable contributions
	Interpreting group memberships

	On the stability of group membership probabilities
	When and why group memberships can be unreliable
	Using the a-score

	Using supplementary individuals
	Rationale
	In practice

