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Abstract

This vignette provides an introductory tutorial to the adegenet package
[1] for the R software [2]. This package implements tools to handle,
analyse and simulate genetic data. Originally developped for multiallelic,
codominant markers such as microsatellites, adegenet now also handles
dominant markers, allows for any ploidy in the data, and implements
the most memory-efficient storage and handling of genome-wide SNP
data. This vignette introduces basic functionalities of the package. Other
vignettes are dedicated to specific topics (see Introduction below).
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1 Introduction

This tutorial introduces some basic functionalities of the adegenet package
for R [2]. The purpose of this package is to provide tools for handling,
analysing and simulating genetic markers data, with an emphasis on multivariate
approaches and exploratory methods. Standard multivariate analyses are
implemented in the adej package [3], of which adegenet was originally an
extension. However, the package has since grown methods of its own such
as the Discriminant Analysis of Principal Components (DAPC, [1]), the spatial
Principal Components Analysis (SPCA, [5]), or the SeqTrack algorithm [6].

Data can be imported from a wide range of formats, including those
of popular software (GENETIX, STRUCTURE, Fstat, Genepop), or from
simple dataframes of genotypes. Polymorphic sites can be extracted from
both nucleotide and amino-acid sequences, with special methods for handling
genome-wide SNPs data with maximum efficiency.

In this tutorial, we first introduce the genind and genpop classes used to
store multiallelic markers (respectively for individuals and populations), and
then show how to extract information from these objects using a variety of
tools. Other vignettes are dedicated to some specific topics:

e sPCA: accessed by typing vignette("adegenet-
spca",package="adegenet’); dedicated to sPCA.

e DAPC: accessed by typing vignette("adegenet-
dapc",package=’adegenet’); dedicated to DAPC.

® genomics: accessed by typing vignette("adegenet-
genomics",package=’adegenet’); dedicated to genome-wide SNP
data handling and analysis.



2 Getting started

2.1 Installing the package

Before going further, we shall make sure that adegenet is well installed on the
computer. Current version of the package is 1.3-4. Make sure you have a recent
version of R (> 2.13.0) by typing:

> R.version.string

[1] "R version 2.14.1 (2011-12-22)"

Then, install adegenet with dependencies using:

> install.packages("adegenet", dep=TRUE)

This only installs packages on CRAN. However, some functions in adegenet also
use graph, developed on Bioconductor, an alternative package repository. To
install graph, type:

> source("http://bioconductor.org/biocLite.R")
> biocLite("graph")

We can now load the package using:
> library(adegenet)

You can make sure that the right version of the package is installed using:

> packageDescription("adegenet", fields = "Version")

[1] "1.3-4"

adegenet version should read 1.3-4.

2.2 Getting help

There are several ways of getting information about R in general, and about
adegenet in particular. The function help.search is used to look for help on a
given topic. For instance:

> help.search("Hardy-Weinberg")
replies that there is a function HWE.test.genind in the adegenet package,
and other similar functions in genetics and pegas. To get help for a given

function, use ?foo where foo is the function of interest. For instance (quotes
and parentheses can be removed):

> 7?spca



will open up the manpage of the spatial principal component analysis [5]. At
the end of a manpage, an ‘example’ section often shows how to use a function.
This can be copied and pasted to the console, or directly executed from the
console using example. For further questions concerning R, the function
RSiteSearch is a powerful tool for making online researches using keywords in
R’s archives (mailing lists and manpages).

adegenet has a few extra documentation sources. Information can be
found from the website (http://adegenet.r-forge.r-project.org/), in the
‘documents’ section, including several tutorials and a manual which compiles all
manpages of the package, and a dedicated mailing list with searchable archives.
To open the website from R, use:

> adegenetWeb()
The same can be done for tutorials, using adegenetTutorial (see manpage to
choose the tutorial to open). Alternatively, one can use vignette, for which

adegenetTutorial is merely a wrapper.
You will also find an overview of the main functionalities of the package

typing:
> 7adegenet
Note that you can also browse help pages as html pages, using:

> help.start()

To go to the adegenet page, click ‘packages’, ‘adegenet’, and ‘adegenet-package’.

Lastly, several mailing lists are available to find different kinds of information
on R; to name a few:

e adegenet forum: adegenet and multivariate analysis of genetic markers.
https://lists.r-forge.r-project.org/cgi-bin/mailman/
listinfo/adegenet-forum

e R-help: general questions about R.
https://stat.ethz.ch/mailman/listinfo/r-help

e R-sig-genetics: genetics in R.
https://stat.ethz.ch/mailman/listinfo/r-sig-genetics

e R-sig-phylo: phylogenetics in R.
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
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3 Object classes

Two main classes of objects are used for storing genetic marker data, depending
on the level at which the genetic information is considered: genind is used for
individual genotypes, whereas genpop is used for alleles numbers counted by
populations. Note that the term 'population’, here and later, is employed in
a broad sense: it simply refers to any grouping of individuals. The specific
class genlight is used for storing large genome-wide SNPs data. See adegenet-
genomics vignette for more information on this topic.

3.1 genind objects

These objects can be obtained by reading data files from other software, from
a data.frame of genotypes, by conversion from a table of allelic frequencies, or
even from aligned DNA or proteic sequences (see ’importing data’). Here, we
introduce this class using the dataset nancycats, which is already stored as a
genind object:

> data(nancycats)
> is.genind(nancycats)

[1] TRUE

> nancycats

### Genind object ###

- genotypes of individuals -

S4 class: genind
Qcall: genind(tab = truenames(nancycats)$tab, pop = truenames(nancycats)$pop)

Q@tab: 237 x 108 matrix of genotypes

Q@ind.names: vector of 237 individual names

@loc.names: vector of 9 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 108 columns of Q@tab

Q@all.names: list of 9 components yielding allele names for each locus
Oploidy: 2

Q@type: codom

Optionnal contents:

@pop: factor giving the population of each individual

Q@pop.names: factor giving the population of each individual

Qother: a list containing: xy

A genind object is formal S4 object with several slots, accessed using the
'@ operator (see class?genind). Note that the ’$’ is also implemented for
adegenet objects, so that slots can be accessed as if they were components of a
list.

The structure of genind objects is described by:



> getClassDef ("genind")

Class "genind" [package "adegenet"]

Slots:

Name: tab loc.names loc.fac loc.nall all.names
Class: matrix character factorOrNULL intOrNum  1istOrNULL
Name: call ind.names pop pop.names ploidy
Class: callOrNULL character factorOrNULL  charOrNULL integer
Name: type other

Class: character  1istOrNULL

Extends: "gen", "indInfo"

The slightly cryptic output of this function means that genind objects
possess the following slots:

Slots

tab: a matrix of relative allele frequencies (individuals in rows, alleles in
columus).

loc.names: a vector of labels for the loci.

loc.fac: a factor indicating which columns in @tab correspond to which
marker.

loc.nall: the number of alleles in each marker.

all.names: a vector of labels for the alleles.

ind.names: a vector of labels for the individuals.

pop: a factor storing group membership of the individuals.
pop.names: labels used for populations.

ploidy: a single integer indicating the ploidy of the individuals.

type: a character string indicating whether the marker is codominant
(codom) or presence/absence (PA).

other: a list storing optional information.
call: the matched call, i.e. command used to create the object.

can be accessed using '@ or ’$’, although in some cases it is more

convenient to use accessors (i.e. functions which return specific contents of the
object) than accessing the slot directly (see section 'Using accessors’).

The main slot in genind is the table of allelic frequencies of individuals (in
rows) for every alleles in every loci stored in @tab. Being frequencies, data sum
to one per locus, giving the score of 1 for an homozygote and 0.5 for a diploid
heterozygote. The particular case of presence/absence data is described in a
dedicated section (see 'Handling presence/absence data’). For instance:



> nancycats$tab[10:18,1:10]

L1.01 L1.02 L1.03 L1.04 L1.05 L1.06 L1.07 L1.08 L1.09 L1.1
010 .
011
012
013
014
015
016
017
018

[eXelololotofoloXe]
[eXeleofolotofooXa]
[elelofololofoloXa]
[elelojojolofoloXa]
[elelojojolofofoXo]
[eXeleofolotolooXa]
[N 1 Folokd ¢ FeoXe]
[elelofololofoloXa]
OCOOUIOOOOO
QOO0OOHOOOO
QUIOOOUIUNOO
[eXeololoNoXo Yoot
OO0 OOO
[eXeolololotofoRoXe]
[elelolojoRofoii K]

Individual ’010’ is an homozygote for the allele 09 at locus 1, while ’018’ is an
heterozygote with alleles 06 and 09. As user-defined labels are not always valid
(for instance, they can be duplicated), generic labels are used for individuals,
markers, alleles and eventually population. The true names are stored in the
object (components $[...] .names where $[...] can be ind, loc, all or pop).
For instance :

> nancycats$loc.names

L1 L2 L3 L4 L5 L6 L7 L8 L9
"fca8" "fca23" "fca43" "fca4b" "fca77" "fca78" "fca90" "fca96" "fca37"

gives the true marker names, and

> nancycats$all.names[[3]]

01 02 03 04 05 06 07 08 09 10
n{33" "935" "{37" "{39" "141" "143" "{45" "147" "149" "{57"

gives the allele names for marker 3.

The slot ’ploidy’ is an integer giving the level of ploidy of the considered

organisms (defaults to 2). This parameter is essential, in particular when
switching from individual frequencies (genind object) to allele counts per
populations (genpop).
The slot ’type’ describes the type of marker used: codominant (codom,
e.g. microsatellites) or presence/absence (PA, e.g. AFLP). By default,
adegenet considers that markers are codominant. Note that actual handling of
presence/absence markers has been made available since version 1.2-3. See the
dedicated section for more information about presence/absence markers.

Optional content can are also be stored within the object. The slot @other
is a list that can include any additional information. The optional slot @pop (a
factor giving a grouping of individuals) is particular in that the behaviour of
many functions will check automatically its content and behave accordingly. In
fact, each time an argument ’pop’ is required by a function, it is first seeked in
@pop. For instance, using the function genind2genpop to convert nancycats to
a genpop object, there is no need to give a 'pop’ argument as it exists in the
genind object:



> head (pop (nancycats))

[1] 11
Levels:

1111
123456789 10 11 12 13 14 15 16 17
> catpop <- genind2genpop(nancycats)

Converting data from a genind to a genpop object...

...done.

> catpop

### Genpop object ###

- Alleles counts for populations -

S4 class: genpop
Qcall: genind2genpop(x = nancycats)

Qtab: 17 x 108 matrix of alleles counts

O@pop.names: vector of 17 population names

Q@loc.names: vector of 9 locus names

@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 108 columns of Qtab

@all.names: list of 9 components yielding allele names for each locus
Oploidy: 2

Qtype: codom

Qother: a list containing: xy

Other additional components can be stored (like here, spatial coordinates
of populations in $xy) and processed during the conversion if the argument
process.other is set to TRUE. In this case, numeric vectors with a length
corresponding to the number of individuals will we averaged per groups; note
that any other function than mean can be used by providing any function to
the argument other.action. Matrices with a number of rows corresponding
to the number of individuals are processed similarly.

Finally, a genind object generally contains its matched call, i.e. the

instruction that created it. When call is available, it can be used to regenerate
an object.

> obj <- read.genetix(system.file("files/nancycats.gtx",package="adegenet"))

Converting data from GENETIX to a genind object...

...done.
> obj$call

read.genetix(file = system.file("files/nancycats.gtx", package = "adegenet"))



> toto <- eval(obj$call)

Converting data from GENETIX to a genind object...

...done.
> identical(obj,toto)

[1] TRUE

3.2 genpop objects

We use the previously built genpop object:
> catpop

### Genpop object ###

- Alleles counts for populations -

S4 class: genpop

@call: genind2genpop(x = nancycats)

@tab: 17 x 108 matrix of alleles counts

Opop.names: vector of 17 population names

Q@loc.names: vector of 9 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 108 columns of Qtab

Q@all.names: list of 9 components yielding allele names for each locus
Oploidy: 2

Q@type: codom

Qother: a list containing: xy
> is.genpop (catpop)

(1] TRUE

> catpop$tab[1:5,1:10]

L1.01 L1.02 L1.03 L1.04 L1.05 L1.06 L1.07 L1.08 L1.09 L1.10
0 0 9

01 0 0 0 0 0 2 1
02 0 0 0 0 0 10 9 8 14 2
03 0 0 0 4 0 0 0 0 1 10
04 0 0 0 3 0 0 0 1 7 17
05 0 0 0 1 0 0 0 0 7 10

The matrix $tab contains alleles counts per population (here, cat colonies).
These objects are otherwise very similar to genind in their structure, and possess
generic names, true names, the matched call and an @other slot:

> getClassDef ("genpop")

Class "genpop" [package "adegenet"]

Slots:

Name: tab loc.names loc.fac loc.nall all.names
Class: matrix character factorOrNULL intOrNum 1istOrNULL
Name: call pop.names ploidy type other
Class: callOrNULL character integer character  1istOrNULL

Extends: "gen", "popInfo"

10



3.3 Using accessors

One advantage of formal (S4) classes is that they allow for interacting simply
with possibly complex objects. This is made possible by using accessors, i.e.
functions that extract information from an object, rather than accessing the
slots directly. Another advantage of this approach is that as long as accessors
remain identical on the user’s side, the internal structure of an object may
change from one release to another without generating errors in old scripts.
Although genind and genpop objects are fairly simple, we recommend using
accessors whenever possible to access their content.

Available accessors are:
e nInd: returns the number of individuals in the object; only for genind.
e nloc: returns the number of loci (SNPs).
e indNames': returns/sets labels for individuals; only for genind.
e locNames': returns/sets labels for loci (SNPs).
e alleles': returns/sets alleles.
e ploidy': returns/sets ploidy of the individuals.
e pop': returns/sets a factor grouping individuals; only for genind.
e other': returns/sets misc information stored as a list.
where T indicates that a replacement method is available using <-; for instance:

> head(indNames (nancycats),10)

001 002 003 004 005 006 007 008 009 010
"N215" "N216" "N217" "N218" "N219" "N220" "N221" "N222" "N223" "N224"

> indNames(nancycats) <- paste("cat", 1:nInd(nancycats),sep=".")
> head(indNames (nancycats),10)

001 002 003 004 005 006 007 008
"cat.1" "cat.2" ‘'"cat.3" "cat.4" '"cat.b" "cat.6" '"cat.7" '"cat.8"
009 010

"cat.9" "cat.10"

Some accessors such as locNames may have specific options; for instance:

> locNames(nancycats)

L1 L2 L3 L4 L5 L6 L7 L8 L9
"fca8" "fca23" "fca43" "fca4b" "fca77" "fca78" "fca90" "fca96" "fca37"

returns the names of the loci, while:

11



> temp <- locNames(nancycats, withAlleles=TRUE)
> head(temp, 10)

[1] "fcaB8.117" "fca8.119" "fca8.121" "fca8.123" "fca8.127" "fca8.129"
[7] "fca8.131" "fca8.133" "fca8.135" "fca8.137"

returns the names of the alleles in the form ’loci.allele’.

The slot 'pop’ can be retrieved and set using pop:
> obj <- nancycats[sample(1:50,10)]
> pop(obj)

[11 2414221232
Levels: 241 3

> pop(obj) <- rep("newPop",10)
> pop(obj)

[1] newPop newPop newPop newPop newPop newPop newPop newPop newPop newPop
Levels: newPop

An additional advantage of using accessors is they are most of the time safer
to use. For instance, pop<- will check the length of the new group membership
vector against the data, and complain if there is a mismatch. It also converts
the provided replacement to a factor, while the command:

> obj@pop <- rep("newPop",10)

would generate an error (since replacement is not a factor).

12



4 Importing/exporting data

4.1 Importing data from GENETIX, STRUCTURE,
FSTAT, Genepop

Data can be read from the software GENETIX (extension .gtx), STRUCTURE
(.str or .stru), FSTAT (.dat) and Genepop (.gen) files, using the
corresponding read function: read.genetix, read.structure, read.fstat,
and read.genepop. These functions take as main argument the path (as a
string of characters) to an input file, and produce a genind object. Alternatively,
one can use the function import2genind which detects a file format from its
extension and uses the appropriate routine. For instance:

> objl <- read.genetix(system.file("files/nancycats.gtx",package="adegenet"))

Converting data from GENETIX to a genind object...

...done.
> obj2 <- import2genind(system.file("files/nancycats.gtx", package="adegenet"))

Converting data from GENETIX to a genind object...

...done.
> all.equal(objl,0bj2)
[1] "Attributes: < Component 2: target, current do not match when deparsed >"

>

The only difference between obj1 and obj2 is their call (which is normal as they
were obtained from different command lines).

4.2 Importing data from other software

Raw genetic markers data are often stored as tables with individuals in row
and markers in column, where each entry is a character string coding the alleles
possessed at one locus. Such data are easily imported into R as a data.frame,
using for instance read.table for text files or read.csv for comma-separated
text files. Then, the obtained data.frame can be converted into a genind
object using df2genind.

There are only a few pre-requisite the data should meet for this conversion
to be possible. The easiest and clearest way of coding data is using a separator
between alleles. For instance, "80/78”, "80|78”, or ”80,78” are different ways of
coding a genotype at a microsatellite locus with alleles 80’ and 78”. Note that
for haploid data, no separator shall be used. The only contraint when using

13



a separator is that the same separator is used in all the dataset. There are
no contraints as to i) the type of separator used or ii) the ploidy of the data.
These parameters can be set in df2genind through arguments sep and ploidy,
respectively.

Alternatively, no separator may be used provided a fixed number of
characters is used to code each allele. For instance, in a diploid organism, "0101”
is an homozygote 1/1 while ”1209” is a heterozygote 12/09 in a two-character
per allele coding scheme. In a tetraploid system with one character per allele,
”1209” will be understood as 1/2/0/9.

Here, we provide an example using randomly generated tetraploid data and
no separator.

> temp <- lapply(1:30, function(i) sample(1:9, 4, replace=TRUE))
> temp <- sapply(temp, paste, collapse="")
> temp <- matrix(temp, nrow=10, dimnames=list(paste("ind",1:10), paste("loc",1:3)))
> temp
loc 1 loc 2 1loc 3
ind 1 "5935" "6566" "7348"
ind 2 "3397" "5788" "3418"
ind 3 "3697" "5118" "2873"
ind 4 "6467" "8225" "2267"
ind 5 "2241" "1469" "9885"
ind 6 "4562" "5345" "5431"
ind 7 "7636" "5373" "9589"
ind 8 "7583" "4738" "9111"
ind 9 "7694" "1892" "1735"
ind 10 "1886" "8954" "3752"

> obj <- df2genind(temp, ploidy=4, sep="")
> obj

### Genind object ###
HHRHHHEEHE
- genotypes of individuals -

S4 class: genind
Qcall: df2genind(X = temp, sep = "", ploidy = 4)

Q@tab: 10 x 27 matrix of genotypes

@ind.names: vector of 10 individual names

Q@loc.names: vector of 3 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 27 columns of Qtab

Q@all.names: list of 3 components yielding allele names for each locus
Q@ploidy: 4

Qtype: codom

Optionnal contents:

Qpop: - empty -

@pop.names: - empty -

Q@other: - empty -

obj is a genind containing the same information, but recoded as a matrix of
allele frequencies ($tab slot). We can check that the conversion was exact by
converting back the object into a table of character strings (function genind2df):

14



> genind2df (obj, sep="|")

ind
ind
ind
ind
ind
ind
ind
ind
ind
ind

HOONOUTDWN -
FPRWWNR,PWWW
PRTREN DO W
RN R
0ODNO O OO -
BPRPOWWRLNROTO
TR VR RN R0
PRNTTRTAD DA
©WO WO D 00N
NRFPORONNFW
Ww 000000 W W K
CorOR®ONAA
NN 0 n o000 w

4.3 Handling presence/absence data

adegenet was primarly designed to handle codominant, multiallelic markers like
microsatellites. However, dominant markers like AFLP can be used as well. In
such a case, only presence/absence of alleles can be deduced accurately from
the genotypes. This has several consequences, like the unability to compute
allele frequencies. Hence, some functionalities in adegenet won’t be available for
dominant markers.

From version 1.2-3 of adegenet, the distinction between both types of
markers is made by the slot @type of genind or genpop objects, which equals
codom for codominant markers, and PA for presence/absence data. In the latter
case, the ’tab’ slot of a genind object no longer contains allele frequencies, but
only presence/absence of alleles in a genotype. Similarly, the tab slot of a
genpop object not longer contains counts of alleles in the populations; instead, it
contains the number of genotypes in each population possessing at least one copy
of the concerned alleles. Moreover, in the case of presence/absence, the slots
loc.nall’, "loc.fac’, and ’all.names’ become useless, and are thus all set to NULL.

Objects of type "PA’ are otherwise handled like usual (type ’codom’) objects.
Operations that are not available for PA type will issue an appropriate error
message.

Here is an example using a toy dataset "AFLP.txt’ that can be downloaded
from the adegenet website, section 'Documentation’:

> dat <- read.table(system.file("files/AFLP.txt",package="adegenet"), header=TRUE)
> dat

locl loc2 loc3 loc4d

indA 1 0 1 1
indB 0 1 1 1
indC 1 1 0 1
indD 0 NA 1 NA
indE 1 1 0 0
indF 1 0 1 1
indG 0 1 1 0

The function df2genind is used to obtain a genind object:

> obj <- genind(dat, ploidy=1, type="PA")
> obj

15



### Cenind object ###
HHHHHEHEHEHE
- genotypes of individuals -

S4 class: genind
Qcall: genind(tab = dat, ploidy = 1, type = "PA")

Qtab: 7 x 4 matrix of genotypes

@ind.names: vector of 7 individual names
@loc.names: vector of 4 locus names
Q@loc.nall: NULL

@loc.fac: NULL

©@all.names: NULL

@ploidy: 1

Qtype: PA

Optionnal contents:

Qpop: - empty -

@pop.names: - empty -

Q@other: - empty -

> truenames (obj)

locl loc2 loc3 loc4d

indA 1 0 1 1
indB 0 1 1 1
indC 1 1 0 1
indD 0 NA 1 NA
indE 1 1 0 0
indF 1 0 1 1
indG 0 1 1 0

One can see that for instance, the summary of this object is more simple (no
numbers of alleles per locus, no heterozygosity):

> pop(obj) <- rep(c('a','b'),4:3)
> summary (obj)

# Total number of genotypes: 7
# Population sample sizes:

ab

43

# Percentage of missing data:

[1] 7.142857

But we can still perform basic manipulation, like converting our object into a
genpop:
> obj2 <- genind2genpop(obj)

Converting data from a genind to a genpop object...

...done.

> obj2
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### Genpop object #i#
HEHHHHEHE S
- Alleles counts for populations -

S4 class: genpop

Qcall: genind2genpop(x = obj)

Qtab: 2 x 4 matrix of alleles counts
@pop.names: vector of 2 population names
Q@loc.names: vector of 4 locus names
Q@loc.nall: NULL

@loc.fac: NULL

Q@all.names: NULL

@ploidy: 1

Qtype: PA

Qother: - empty -

> truenames (obj2)

locl loc2 loc3 loc4d
a 2 2 3
b 2 2 2 1

To continue with the toy example, we can proceed to a simple PCA. NAs are
first replaced:

> objNoNa <- na.replace(obj,met=0)
Replaced 2 missing values

> objNoNa@tab

=

HORORFLON
[

HPERORORFLW
[

~NOUIRWN -
OFRrFRPROROFE
O OORREE DN

Now the PCA is performed and plotted:

library (ade4)

pcal <- dudi.pca(objNoNa,scannf=FALSE,scale=FALSE)

temp <- as.integer (pop(objNoNa))

myCol <- transp(c("blue","red"),.7) [temp]

myPch <- ¢(15,17) [temp]

plot(pcal$li, col=myCol, cex=3, pch=myPch)

abline (h=0,v=0,col="grey",lty=2)

s.arrow(pcal$cl, add.plot=TRUE)

legend("topright", pch=c(15,17), col=transp(c("blue","red"),.7), leg=c("Group A","Group B"), pt.cex=2)

VVVVVVYVVYV
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More generally, multivariate analyses from ade4, sPCA (spca), DAPC (dapc),
the global and local tests (global.rtest, local.rtest), or the Monmonier’s
algorithm (monmonier) will work just fine with presence/absence data. However,
it is clear that the usual Euclidean distance (used in PCA and sPCA), as well as
many other distances, is not as accurate to measure genetic dissimilarity using
presence/absence data as it is when using allele frequencies. The reason for this
is that in presence/absence data, a part of the information is simply hidden.
For instance, two individuals possessing the same allele will be considered at
the same distance, whether they possess one or more copies of the allele. This
might be especially problematic in organisms having a high degree of ploidy.

4.4 SNPs data

In adegenet, SNP data can be handled in two different ways. For relatively
small datasets (up to a few thousand SNPs) SNPs can be handled as usual
codominant markers such as microsatellites using genind objects. In the case
of genome-wide SNP data (from hundreds of thousands to millions of SNPs),
genind objects are no longer efficient representation of the data. In this case, we
use genlight objects to store and handle information with maximum efficiency
and minimum memory requirements. See the vignette adegenet-genomics for
more information. Below, we introduce only the case of SNPs handled using
genind objects.
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The most convenient way to convert SNPs into a genind is using df2genind,
which is described in the previous section. Let dat be an input matrix, as can
be read into R using read.table or read.csv, with genotypes in row and SNP
loci in columns.
> dat <- matrix(sample(c("a","t","g","c"), 15, replace=TRUE),nrow=3)

> rownames(dat) <- paste("genot.", 1:3)
> colnames(dat) <- 1:5
> dat

1 2 3 4 5
genot . 1 "Cll |It|l llcll lltll "C]l
genot Lo Mgt mgnomgn o mgn owgn
genot . 3 "g" Ilgll llgll IICll "Cll

> obj <- df2genind(dat, ploidy=1)
> truenames (obj)

l.al.cl.g2.g 2.t 3.c 3.g 3.t 4.a4.c 4.t 5.c 5.t
genot. 1 0 1 0 O 1 i1 0 o0 o0 0 1 1 0
genot. 2 1 O O O 1 0 O 1 i 0 o0 o0 1
genot. 3 0 0 1 1 0 0 1 0 0 1 0 1 0

obj is a genind containing the SNPs information, which can be used for
further analysis in adegenet.

4.5 Extracting polymorphism from DNA sequences

This section only covers the cases of relatively small datasets which can
be handled efficiently using genind objects. For bigger (near full-genomes)
datasets, SNPs can be extracted from fasta files into a genlight object using
fasta2genlight. See the vignette adegenet-genomics for more information.

DNA sequences can be read into R using the ape package [3], and imported
into adegenet using DNAbin2genind. There are several ways ape can be used to
read in DNA sequences. The easiest one is reading data from a usual format
such as FASTA or Clustal using read.dna. Other options include reading data
directly from GenBank using read.GenBank, or from other public databases
using the seginr package and transforming the alignment object into a DNAbin
using as.DNAbin. Here, we illustrate this approach by re-using the example of
read.GenBank. A connection to the internet is required, as sequences are read
directly from a distant database.

> library(ape)

> ref <- c("U15717", "U15718", "U15719", "U15720",
+ "Uis721", "U15722", "U15723", "U15724")
> myDNA <- read.GenBank(ref)

> myDNA

8 DNA sequences in binary format stored in a list.
All sequences of same length: 1045

Labels: U15717 U15718 U15719 U15720 U15721 U15722 ...
Base composition:

a [ g t
0.267 0.351 0.134 0.247
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> class(myDNA)

[1] "DNAbin"

In adegenet, only polymorphic loci are conserved; importing data from a DNA
sequence to adegenet therefore consists in extracting SNPs from the aligned
sequences. This conversion is achieved by DNAbin2genind. This function allows
one to specify a threshold for polymorphism; for instance, one could retain only
SNPs for which the second largest allele frequency is greater than 1% (using the
polyThres argument). This is achieved using:

> obj <- DNAbin2genind(myDNA, polyThres=0.01)
> obj

### Genind object #i#

- genotypes of individuals -

S4 class: genind
@call: DNAbin2genind(x = myDNA, polyThres = 0.01)

Q@tab: 8 x 318 matrix of genotypes

@ind.names: vector of 8 individual names

Q@loc.names: vector of 155 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 318 columns of Qtab

Q@all.names: list of 155 components yielding allele names for each locus
O@ploidy: 1

Q@type: codom

Optionnal contents:
@pop: - empty -
Q@pop.names: - empty -

Qother: - empty -

Here, out of the 1,045 nucleotides of the sequences, 318 SNPs where extracted
and stored as a genind object. Positions of the SNPs are stored as names of
the loci:

> head(locNames(obj))

L0OO1 LOO2 LO0O3 LO04 LOO5 L006
ll11|l II13II II26II Il31ll ||34|| "39"

4.6 Extracting polymorphism from proteic sequences

Alignments of proteic sequences can be exploited in adegenet in the same way
as DNA sequences (see section above). Alignments are scanned for polymorphic
sites, and only those are retained to form a genind object. Loci correspond
to the position of the residue in the alignment, and alleles correspond to the
different amino-acids (AA). Aligned proteic sequences are stored as objects of
class alignment in the seginr package [9]. See 7as.alignment for a description
of this class. The function extracting polymorphic sites from alignment objects
is alignment2genind.

Its use is fairly simple. It is here illustrated using a small dataset of aligned
proteic sequences:
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> library(seqinr)
> mase.res <- read.alignment(file = system.file("sequences/test.mase",package = "seqinr"), format = "mase")
> mase.res

$nb

[11 6

$nam

[1] "Langur" "Baboon" "Human" "Rat" "Cow" "Horse"

$seq

$seql[1]]

[1] "-kifercelartlkklgldgykgvslanwvclakwesgynteatnynpgdestdygifqinsrywcnngkpgavdachiscsallgnniadavacakrvvsdqgiraw
$seql[2]]

[1] "-kifercelartlkrlgldgyrgislanwvclakwesdyntqatnynpgdqstdygifqinshywcndgkpgavnachiscnallqdnitdavacakrvvsdqgiraw
$seq[[3]]

[1] "-kvfercelartlkrlgmdgyrgislanwmclakwesgyntratnynagdrstdygifqinsrywcndgkpgavnachlscsallqdniadavacakrvvrdqgiraw
$seq[[4]]

[1] "-ktyercefartlkrngmsgyygvsladwvclaghesnyntqarnydpgdqstdygifqinsrywcndgkpraknacgipcsallqdditqaiqcakrvvrdggiraw
$seql[5]]

[1] "-kvfercelartlkklgldgykgvslanwlcltkwessyntkatnynpssestdygifqinskwwcndgkpnavdgchvscselmendiakavacakkivseqgitaw
$seql[6]]

[1] "-kvfskcelahklkagemdgfggyslanwvcmaeyesnfntrafngknangssdyglfqlnnkwwckdnkrsssnacnimcsklldenidddiscakrvvrdkgmsaw
$com

[1] ";empty description\n" ";\n" "s\n"

[4] n ;\nll n ; \n" n ;\nll

attr(,"class")
[1] "alignment"

> x <- alignment2genind(mase.res)
> x

### GCenind object ###
HHHHHEEEHEHE
- genotypes of individuals -

S4 class: genind
Qcall: alignment2genind(x = mase.res)

@tab: 6 x 212 matrix of genotypes

Q@ind.names: vector of 6 individual names

Q@loc.names: vector of 82 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 212 columns of Qtab

Q@all.names: list of 82 components yielding allele names for each locus
@ploidy: 1

Qtype: codom

Optionnal contents:

Qpop: - empty -

@pop.names: - empty -

Q@other: a list containing: com

The six aligned protein sequences (mase.res) have been scanned for
polymorphic sites, and these have been extracted to form the genind object
x. Note that several settings such as the characters corresponding to missing
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values (i.e., gaps) and the polymorphism threshold for a site to be retained can
be specified through the function’s arguments (see 7alignment2genind).
The names of the loci directly provides the indices of polymorphic sites:

> head(locNames(x))

LO1
ngn

LO2 LO3 L04 LO5 LO6
ngn ngn ngn ngn o nqqn

The table of polymorphic sites can be reconstructed easily by:

> tabAA <- genind2df (x)
> dim(tabAA)
[11 6 82

> tabAA[, 1:20]

34560911 12 15 16 17 18 19 21 22 24 28 30 32 33 34
Langur i ferl r t k 1 g 1 4d y k v n v 1 a k
Baboon i ferl r t r 1 g 1 d y r i n v 1 a k
Human vferl r t r 1 g m d y r i n m 1 a k
Rat tyerf r t r n gms y y v dv 1l agqg
Cow vferl r t k 1 g 1 dy k v .n 1l 1 t k
Horse vfsk1l h k a q e m d f g y n v m a e

The global AA composition of the polymorphic sites is given by:

> table(unlist(tabAA))

Now that polymorphic sites have been converted into a genind object, simple
distances can be computed between the sequences. Note that adegenet does
not implement specific distances for protein sequences, we only use the simple
Euclidean distance. Fancier protein distances are implemented in R; see for
instance dist.alignment in the seginr package, and dist.ml in the phangorn
package.

> D <- dist(truenames(x))
>D

Langur Baboon Human Rat Cow
Baboon 5.291503
Human 6.000000 5.291503
Rat 8.717798 8.124038 8.602325
Cow 7.874008 8.717798 8.944272 10.392305
Horse 11.313708 11.313708 11.224972 11.224972 11.747340

This matrix of distances is small enough for one to interprete the raw numbers.
However, it is also very straightforward to represent these distances as a tree
or in a reduced space. We first build a Neighbor-Joining tree using the ape
package:
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library (ape)

tre <- nj(D)

par (xpd=TRUE)

plot(tre, type="unrooted", edge.w=2)

edgelabels (tex=round(tre$edge.length,1), bg=rgb(.8,.8,1,.8))

VvV VVVYV

Baboon

Human

The best possible planar representation of these Euclidean distances is
achieved by Principal Coordinate Analyses (PCoA), which in this case will give
identical results to PCA of the original (centred, non-scaled) data:
> pcol <- dudi.pco(D, scannf=FALSE,nf=2)

> scatter(pcol, posi="bottomright")
> title("Principal Coordinate Analysis\n-based on proteic distances-")
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Principal Coordinate Analysis
Ea—based on proteic distances—

BFiuman]
Eigenvalues
Cow

4.7 Using genind/genpop constructors

genind or genpop objects can be constructed from data matrices similar
to the $tab component (respectively, alleles frequencies and alleles counts).
This is achieved by the constructors genind (or as.genind) and genpop (or
as.genpop). However, these low-level functions are first meant for internal use,
and are called for instance by functions such as read.genetix. Consequently,
there is much less control on the arguments and improper specification can lead
to creating improper genind/genpop objects without issuing a warning or an
error. One should therefore use these functions with additional care as to how
information is coded. The table passed as argument to these constructors must
have correct names: unique rownames identifying genotypes/populations, and
unique colnames having the form ’[marker].[allele] .
Here is an example for genpop using a dataset from ade:

> library(ade4)

> data(microsatt)
> microsatt$tab[10:15,12:15]

INRA32.168 INRA32.170 INRA32.174 INRA32.176
1

Mtbeliard 0

NDama 0 0 0 12
Normand 1 0 0 2
Parthenais 8 5 0 3
Somba 0 0 0 20
Vosgienne 2 0 0 0
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microsatt$tab contains alleles counts per populations, and can therefore be
used to make a genpop object. Moreover, column names are set as required,
and row names are unique. It is therefore safe to convert these data into a
genpop using the constructor:

> toto <- genpop(microsatt$tab)
> toto

### Genpop object ###
HEHHHEHE S
- Alleles counts for populations -

S4 class: genpop
Qcall: genpop(tab = microsatt$tab)

Q@tab: 18 x 112 matrix of alleles counts

@pop.names: vector of 18 population names

Q@loc.names: vector of 9 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 112 columns of Qtab

Q@all.names: list of 9 components yielding allele names for each locus
O@ploidy: 2

Q@type: codom

Qother: - empty -
> summary (toto)

# Number of populations: 18

# Number of alleles per locus:
L1 L2 L3 L4 L5 L6 L7 L8 L9
8 15 11 10 17 10 14 15 12

# Number of alleles per population:
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
39 69 51 59 52 41 34 48 46 47 43 56 57 52 49 64 56 67

# Percentage of missing data:
(11 o

4.8 Exporting data

Genotypes in genind format can be exported to the R packages genetics (using

genind2genotype) and hierfstat (using genind2hierfstat). The package

genetics is now deprecated, but the implemented class genotype is still used

in various packages. The package hierfstat does not define a class, but requires

data to be formated in a particular way. It has been removed from CRAN as of

R version 2.13.0 for maintainance issues, but is supposed to be back eventually.
Here are examples of how to use these functions:

> obj <- genind2genotype(nancycats)
> class(obj)

[1] "data.frame"
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> obj[1:4,1:5]

fca8
cat.1 <NA>
cat.2 <NA>

cat.3 135/143
cat.4 135/133

fca23
136/146
146/146
136/146
138/138

> class(obj$fca8)

(1]

fcad3 fcadb
139/139 120/116
139/145 126/120
141/141 116/116
139/141 126/116

"genotype" "factor"

> obj <- genind2hierfstat(nancycats)

> class(obj)
[1]

"data.fram

> obj[1:4,1:5]

e"

pop fca8 fca23 fca43 fcadb
NA 409 404

cat.1 1 103
cat.2 1 NA 909 407 305
cat.3 1 913 409 505 101
cat.4 1 809 505 405 105

fca77
156/156
156/156
156/152
150/150

A more generic way to export data is to produce a data.frame of genotypes
coded by character strings. This is done by genind2df:

> obj <- genind2df (nancycats)

> obj[1:5,1:5]

pop fc
cat.1 1 <N
cat.2 1 <N
cat.3 1 1351
cat.4 1 1331
cat.b 1 1331

fca23
136146
146146
136146
138138
140146

fcad3
139139
139145
141141
139141
141145

fcadb
116120
120126
116116
116126
126126

However, some software will require alleles to be separated. The argument sep
allows one to specify any separator. For instance:

> genind2df (nancycats,sep="|")[1:5,1:5]

pop £
cat.1 1 <
cat.2 1 <
cat.3 1 135]
cat.4 1 133|
cat.5 1 133]

Note that tabulations can be

ca8
NA>
NA>
143
135
135

fca23
136|146
146|146
136|146
1381138
140|146

fcad3
139139
139|145
141|141
139|141
141|145

fcadb
116|120
120|126
116|116
1161126
126|126

obtained as follows using ’\t’ character.
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5 Basics of data analysis

5.1 Manipulating the data

Data manipulation is meant to be particularly flexible in adegenet. First, as
genind and genpop objects are basically formed by a data matrix (the @tab slot),
it is natural to subset these objects like it is done with a matrix. The [ operator
does this, forming a new object with the retained genotypes/populations and
alleles:

> data(microbov)
> toto <- genind2genpop (microbov)

Converting data from a genind to a genpop object...

...done.

> toto

### Genpop object ###

- Alleles counts for populations -

S4 class: genpop
Qcall: genind2genpop(x = microbov)

Q@tab: 15 x 373 matrix of alleles counts

@pop.names: vector of 15 population names

Q@loc.names: vector of 30 locus names

@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 373 columns of Qtab

@all.names: list of 30 components yielding allele names for each locus
Oploidy: 2

Q@type: codom

Qother: a list containing: coun breed spe

> toto@pop.names

01 02 03
"Borgou" "Zebu" "Lagunaire" "NDama"
06 07 08
"Somba" "Aubrac" "Bazadais" "BlondeAquitaine"
09 10
"BretPieNoire" "Charolais" "Gascon" "Limousin"
13 14 15
"MaineAnjou" "Montbeliard" "Salers"

> titi <- toto[1:3,]
> titi@pop.names

1 2 3
"Borgou" "Zebu" "Lagunaire"

The object toto has been subsetted, keeping only the first three populations.
Of course, any subsetting available for a matrix can be used with genind and
genpop objects. In addition, we can subset loci directly using the generic marker
names:
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> tata <- titi[,loc="L03"]
> tata

### Genpop object ###

- Alleles counts for populations -

S4 class: genpop

Q@call: .local(x = x, i = i, j = j, loc = "LO3", drop = drop)

@tab: 3 x 12 matrix of alleles counts

Opop.names: vector of 3 population names

@loc.names: vector of 1 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 12 columns of Qtab

Q@all.names: list of 1 components yielding allele names for each locus
Oploidy: 2

Q@type: codom

Q@other: a list containing: coun breed spe

Now, tata only contains the 12 alleles of the third marker of titi.
To simplify the task of separating data by marker, the function seploc

can be used. It returns a list of objects (optionnaly, of data matrices), each
corresponding to a marker:

> data(nancycats)
> sepCats <- seploc(nancycats)
> class(sepCats)

[1] "list"
> names (sepCats)
[1] "fca8" "fca23" "fca43" "fca4b" "fca77" "fca78" "fca90" "fca96" "fca37"

> sepCats$fcadb

### Genind object ###
HERHHHEHEHE
- genotypes of individuals -

S4 class: genind
@call: .local(x = x)

Qtab: 237 x 9 matrix of genotypes

@ind.names: vector of 237 individual names

Q@loc.names: vector of 1 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 9 columns of Qtab

Q@all.names: list of 1 components yielding allele names for each locus
O@ploidy: 2

Qtype: codom

Optionnal contents:

Q@pop: factor giving the population of each individual

Q@pop.names: factor giving the population of each individual

Q@other: a list containing: xy
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The object sepCats$fcadb only contains data of the marker fcads.

Following the same idea, seppop allows one to separate genotypes in a
genind object by population. For instance, we can separate genotype of cattles
in the dataset microbov by breed:

> data(microbov)
> obj <- seppop(microbov)
> class(obj)

[1] "list"

> names (obj)

[1] "Borgou" "Zebu" "Lagunaire" "NDama"

[56] "Somba" "Aubrac" "Bazadais" "BlondeAquitaine"
[9] "BretPieNoire" "Charolais" "Gascon" "Limousin"

[13] "MaineAnjou" "Montbeliard" "Salers"

> obj$Borgou

### Genind object ###

- genotypes of individuals -

S4 class: genind
@call: .local(x = x, i =i, j = j, treatOther = ..1, quiet = ..2, drop = drop)

Q@tab: 50 x 373 matrix of genotypes

Q@ind.names: vector of 50 individual names

Q@loc.names: vector of 30 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 373 columns of Q@tab

Q@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2

Q@type: codom

Optionnal contents:

@pop: factor giving the population of each individual

Q@pop.names: factor giving the population of each individual

Qother: a list containing: coun breed spe

The returned object obj is a list of genind objects each containing genotypes
of a given breed.

A last, rather vicious trick is to separate data by population and by marker.
This is easy using lapply; one can first separate population then markers, or
the contrary. Here, we separate markers inside each breed in obj:

> obj <- lapply(obj,seploc)
> names (obj)

[1]1 "Borgou" "Zebu" "Lagunaire" "NDama"

[5] "Somba" "Aubrac" "Bazadais" "BlondeAquitaine"
[9] "BretPieNoire" "Charolais" "Gascon" "Limousin"

[13] "MaineAnjou" "Montbeliard" "Salers"
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> class(obj$Borgou)

[1] "list"

> names (obj$Borgou)

[1] "INRA63" "INRA5" "ETH225" "ILSTS5" "HELS5" "HEL1" "INRA35"
[8] "ETH152" "INRA23" "ETH10" "HEL9" "CSSM66" "INRA32" "ETH3"
[156] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"

[22] "CSRM60" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
[29] "TGLA53" "SPS115"

> obj$Borgou$INRA63

HHRHHEHEHE
### Genind object ###

- genotypes of individuals -

S4 class: genind
@call: .local(x = x)

O@tab: 50 x 9 matrix of genotypes

Q@ind.names: vector of 50 individual names

Q@loc.names: vector of 1 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 9 columns of Qtab

Q@all.names: list of 1 components yielding allele names for each locus
@ploidy: 2

Qtype: codom

Optionnal contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

Qother: a list containing: coun breed spe

For instance, obj$Borgou$INRA63 contains genotypes of the breed Borgou
for the marker INRAG3.

Lastly, one may want to pool genotypes in different datasets, but having
the same markers, into a single dataset. This is more than just merging the
@tab components of all datasets, because alleles can differ (they almost always
do) and markers are not necessarily sorted the same way. The function repool
is designed to avoid these problems. It can merge any genind provided as
arguments as soon as the same markers are used. For instance, it can be used
after a seppop to retain only some populations:

> obj <- seppop(microbov)
> names (obj)

[1] "Borgou" "Zebu" "Lagunaire" "NDama"

[6] "Somba" "Aubrac" "Bazadais" "BlondeAquitaine"
[9] "BretPieNoire" "Charolais" "Gascon" "Limousin"

[13] "MaineAnjou" "Montbeliard" "Salers"
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> newObj <- repool(obj$Borgou, obj$Charolais)
> newObj

HHRHHEHEHE
### Genind object ###

- genotypes of individuals -

S4 class: genind
Qcall: repool(obj$Borgou, obj$Charolais)

Q@tab: 105 x 295 matrix of genotypes

Q@ind.names: vector of 105 individual names

Q@loc.names: vector of 30 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 295 columns of Qtab

Q@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2

Qtype: codom

Optionnal contents:

@pop: factor giving the population of each individual

@pop.names: factor giving the population of each individual

Qother: - empty -

> newObj$pop.names

P1 P2
"Borgou" "Charolais"

Done !

5.2 Using summaries

Both genind and genpop objects have a summary providing basic information
about data. Informations are both printed and invisibly returned as a list.

> toto <- summary(nancycats)

# Total number of genotypes: 237

# Population sample sizes:
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17
10 22 12 23 15 11 14 10 9 11 20 14 13 17 11 12 13

# Number of alleles per locus:
L1 L2 L3 L4 L5 L6 L7 L8 L9
16 11 10 9 12 8 12 12 18

# Number of alleles per population:
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
36 53 50 67 48 56 42 54 43 46 70 52 44 61 42 40 35

# Percentage of missing data:
[1] 2.344116

# Observed heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.6682028 0.6666667 0.6793249 0.7083333 0.6329114 0.5654008 0.6497890 0.6184211
L9

0.4514768

# Expected heterozyg051ty

L1 L4 L5 L6 L7 L8

0.8657224 0. 7928751 0. 7953319 0.7603095 0.8702576 0.6884669 0.8157881 0.7603493

L9

0.6062686
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> names(toto)

[11 "nn "pop.eff" "loc.nall" "pop.nall" "NA.perc" "Hobs" "Hexp"

> par (mfrow=c(2,2))

> plot(toto$pop.eff,toto$pop.nall,xlab="Colonies sample size",ylab="Number of alleles",main="Alleles numbers and
> text(toto$pop.eff,toto$pop.nall,lab=names(toto$pop.eff))

> barplot(toto$loc.nall,ylab="Number of alleles", main="Number of alleles per locus")

> barplot (toto$Hexp-toto$Hobs ,main="Heterozygosity: expected-observed",ylab="Hexp - Hobs")

> barplot(toto$pop.eff,main="Sample sizes per population",ylab="Number of genotypes",las=3)
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Is mean observed H significantly lower than mean expected H 7

> bartlett.test(list(toto$Hexp,toto$Hobs))

Bartlett test of homogeneity of variances

data: 1list(toto$Hexp, toto$Hobs)
Bartlett's K-squared = 0.047, df = 1, p-value = 0.8284

> t.test(toto$Hexp,toto$Hobs,pair=T,var.equal=TRUE,alter="greater")

Paired t-test

data: toto$Hexp and toto$Hobs
t = 8.3294, df = 8, p-value = 1.631e-05
alternative hypothesis: true difference in means is greater than O
95 percent confidence interval:
0.1134779 Inf
sample estimates:
mean of the differences
0.1460936
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Yes, it is.

5.3 Testing for Hardy-Weinberg equilibrium

The Hardy-Weinberg equilibrium test is implemented for genind objects. The
function to use is HWE.test.genind, and requires the package genetics. Here
we first produce a matrix of p-values (res="matrix") using parametric test.
Monte Carlo procedure are more reliable but also more computer-intensive (use
permut=TRUE).

> toto <- HWE.test.genind(nancycats,res="matrix")
> dim(toto)

(11 17 9

One test is performed per locus and population, i.e. 153 tests in this case. Thus,
the first question is: which tests are highly significant?

> colnames (toto)

[1] "fca8" "fca23" "fca43" "fca4b" "fca77" "fca78" "fca90" "fca96" "fca37"

> idx <- which(toto0<0.0001,TRUE)

> idx

row col
P14 14 2
P02 2 7
P02 2 8
P05 5 9

Here, only 4 tests indicate departure from HW. Rows give populations, columns
give markers. Now complete tests are returned, but the significant ones are
already known.

> toto <- HWE.test.genind(nancycats,res="full")
> mapply(function(i,j) toto[[il1[[jl], idx[,2], idx[,1], SIMPLIFY=FALSE)

$P14
Pearson's Chi-squared test
data: tab
X-squared = 49.7996, df = 15, p-value = 1.298e-05
$P02
Pearson's Chi-squared test
data: tab
X-squared = 56.7523, df = 15, p-value = 9.04e-07
$P02
Pearson's Chi-squared test

data: tab

33



X-squared = 92.0716, df = 15, p-value = 4.067e-13

$PO5
Pearson's Chi-squared test

data: tab
X-squared = 30.0206, df = 6, p-value = 3.896e-05

5.4 Measuring and testing population structure (a.k.a F
statistics)

Population structure is traditionally measured and tested using F statistics,
in particular Fst. Since version 2.13.0 of R, the package hierfstat, which
implemented most F statistics and related tests, has been removed from
CRAN for maintenance issues. As a consequence, adegenet has lost a few
functionalities, namely general F statistics (function fstat) and a test of
overall population structure (gstat.randtest).

However, it is still possible to compute pairwise F'st using adegenet. Pairwise
F'st is frequently used as a measure of distance between populations. The
function pairwise.fst computes Nei’s estimator [10] of pairwise F'st, defined
as:

H; — (’I’LAHb(A) + TLBHS(B))/(’I’LA + nB)

Ht

where A and B refer to the two populations of sample size n4 and ng and
respective expected heterozygosity Hg(A) and Hs(B), and H, is the expected
heterozygosity in the whole dataset. For a given locus, expected heterozygosity
is computed as 1 — 3" p?, where p; is the frequency of the ith allele, and the >
represents summation over all alleles. For multilocus data, the heterozygosity
is simply averaged over all loci. These computations are achieved for all pairs
of populations by the function pairwise.fst; we illustrate this on a subset of
individuals of nancycats (computations for the whole dataset would take a few
tens of seconds):

Fst(A,B) =

> data(nancycats)
> matFst <- pairwise.fst(nancycats[1:50, treatOther=FALSE])
> matFst

1 2 3
2 0.08018500
3 0.07140847 0.08200880
4 0.08163151 0.06512457 0.04131227

The resulting matrix is Euclidean when there are no missing values:

> is.euclid(matFst)

[1] TRUE

It can therefore be used in a Principal Coordinate Analysis (which requires
Euclideanity), used to build trees, etc.
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5.5 Estimating inbreeding

Inbreeding refers to an excess of homozygosity in a given individual due to the
mating of genetically related parents. This excess of homozygosity is due to
the fact that there are non-negligible chances of inheriting two identical alleles
from a recent common ancestor. Inbreeding can be associated to a loss of
fitness leading to "inbreeding depression”. Typically, loss of fitness is caused by
recessive deleterious alleles which have usually low frequency in the population,
but for which inbred individuals are more likely to be homozygotes.

The inbreeding coefficient F' is defined as the probability that at a given
locus, two identical alleles have been inherited from a common ancestor. In
the absence of inbreeding, the probability of being homozygote at one loci is
(for diploid individuals) simply Y, p? where i indexes the alleles and p; is the
frequency of allele 7. This can be generalized incorporating F' as:

p(homozygote) = F + (1 — F) Zp?

and even more generally, for any ploidy :

p(homozygote) = F + (1 — F) pr

This therefore allows for computing the likelihood of a given state
(homozygote/heterozygote) in a given genotype (log-likelihood are summed
across loci for more than one marker).

This estimation is achieved by inbreeding. Depending on the value of
the argument res.type, the function returns a sample from the likelihood
function (res.type=’sample’) or the likelihood function itself, as a R function
(res.type=’function’). While likelihood functions are quickly obtained and
easy to display graphically, sampling from the distributions is more computer
intensive but useful to derive summary statistics of the distributions. Here, we
illustrate inbreeding using the microbov dataset, which contains cattle breeds
genotypes for 30 microsatellites; to focus on breed Salers only, we use seppop:
> data(microbov)

> sal <- seppop(microbov)$Salers
> sal

### Genind object ###

- genotypes of individuals -

S4 class: genind
Qcall: .local(x = x, i =i, j = j, treatOther = ..1, quiet = ..2, drop = drop)

Q@tab: 50 x 373 matrix of genotypes
@ind.names: vector of 50 individual names

Q@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
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Q@loc.fac: locus factor for the 373 columns of Qtab

Q@all.names: list of 30 components yielding allele names for each locus
Oploidy: 2

Q@type: codom

Optionnal contents:

Q@pop: factor giving the population of each individual

Q@pop.names: factor giving the population of each individual

Qother: a list containing: coun breed spe

We first compute the mean inbreeding for each individual, and plot the resulting
distribution:

> temp <- inbreeding(sal, N=100)
> class(temp)

[1] "list"
> head(names (temp))

[1] "FRBTSAL9087" "FRBTSAL9088" "FRBTSAL9089" "FRBTSAL9090" "FRBTSAL9091"
[6] "FRBTSAL9093"

> head(temp[[1]],20)

[1] 0.054500366 0.375578242 0.113382975 0.159695162 0.084001317 0.220495988
[7] 0.014938518 0.342285404 0.098245256 0.143267867 0.253635602 0.150834912
[13] 0.083447557 0.025295140 0.105953534 0.001688183 0.537576949 0.283150680
[19] 0.157301441 0.052709799

temp is a list of values sampled from the likelihood distribution of each
individual; means values are obtained for all individuals using sapply:

> Fbar <- sapply(temp, mean)

> hist(Fbar, col="firebrick", main="Average inbreeding in Salers cattles")
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We can see that some individuals (actually, a single one) have higher inbreeding
(>0.4). We can recompute inbreeding for this individual, asking for the
likelihood function to be returned:

> which(Fbar>0.4)

FRBTSAL9266

37
> F <- inbreeding(sal, res.type="function") [which(Fbar>0.4)]
> F

$FRBTSAL9266
function (F)

args <- lapply(as.list(match.call())[-1L], eval, parent.frame())

names <- if (is.null(names(args)))
character (length(args))

else names(args)

dovec <- names %inj}, vectorize.args

do.call("mapply", c(FUN = FUN, args[dovec], MoreArgs = list(args[!dovec]),
SIMPLIFY = SIMPLIFY, USE.NAMES = USE.NAMES))

}
<environment: 0x43b9280>

The output object F can seem a bit cryptic: it is an function embedded
within a hidden environment. This does not matter, however, since it is easily
represented:
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> plot (F$FRBTSAL9266, main=paste("Inbreeding of individual",names(F)), xlab="Inbreeding (F)", ylab="Probability d

Inbreeding of individual FRBTSAL9266
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Indeed, this individual shows subsequent inbreeding, with about 50% chances of
being homozygote through inheritance from a common ancestor of its parents.
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6 Multivariate analysis

6.1 General overview

Multivariate analysis consists in summarising a strongly multivariate
information into a few synthetic variables. In genetics, such approaches
are useful to get a simplified picture of the genetic diversity obersved amongst
individuals or populations. A review of multivariate analysis in population
genetics can be found in [7]. Here, we aim at providing an overview of some
applications using methods implemented in ade4 and adegenet.

Useful functions include:

e scaleGen (adegenet): centre/scale allele frequencies and replaces missing
data; useful, among other things, before running a principal component
analysis (PCA).

e dudi.pca (ade4): implements PCA; can be used on transformed allele
frequencies of individuals or populations.

e dudi.ca (ade): implements Correspondance Analysis (CA); can be used
on raw allele counts of populations (@tab slot in genpop objects).

e dist.genpop (adegenet): implements 5 pairwise genetic distances between
populations

e pairwise.fst (adegenet): implements pairwise Fgr, which is also a
Euclidean distance between populations.

e dist (stats): computes pairwise distances between multivariate
observations; can be used on raw or transformed allele frequencies.

e dudi.pco (adej): implements Principal Coordinates Analysis (PCoA);
this methods finds synthetic variables which summarize a Euclidean
distance matrix as best as possible; can be used on outputs of dist,
dist.genpop, and pairwise.fst.

e is.euclid (ade4): tests whether a distance matrix is Euclidean, which is
a pre-requisite of PCoA.

e cailliez (ade4): renders a non-Euclidean distance matrix Euclidean by
adding a constant to all entries.

e dapc (adegenet): implements the Discriminant Analysis of Principal
Components (DAPC [4]), a powerful method for the analysis of population
genetic structures; see dedicated vignette (adegenet-dapc).

e sPCA (adegenet): implements the spatial Principal Component Analysis
(sPCA [9]), a method for the analysis of spatial genetic structures; see
dedicated vignette (adegenet-dapc).
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e glPca (adegenet): implements PCA for genome-wide SNP data stored as
genlight objects; see dedicated vignette (adegenet-genomics).

Besides the procedures themselves, graphic functions are also often of the
utmost importance; these include:

e scatter (ade4,adegenet): generic function to display multivariate
analyses; in practice, the most useful application for genetic data is the
one implemented in adegenet for DAPC results.

e s.label (ade4): function used for basic display of principal components.

e loadingplot (adegenet): function used to display the loadings (i.e.,
contribution to a given structure) of alleles for a given principal
component; annotates and returns the most contributing alleles.

e s.class (ade4): displays two quantitative variables with known groups
of observations, using inertia ellipses for the groups; useful to represent
principal components when groups are known.

e s.chull (ade4): same as s.class, except convex polygons are used rather
than ellipses.

e s.value (ade/): graphical display of a quantitative variable distributed
over a two-dimensional space; useful to map principal components or allele
frequencies over a geographic area.

e colorplot (adegenet): graphical display of 1 to 3 quantitative
variables distributed over a two-dimensional space; useful for combined
representations of principal components over a geographic area. Can also
be used to produce color versions of traditional scatterplots.

e transp (adegenet): auxiliary function making colors transparent.

e num2col (adegenet): auxiliary function transforming a quantitative
variable into colors using a given palette.

e assignplot (adegenet): specific plot of group membership probabilities
for DAPC; see dedicated vignette (adegenet-dapc).

e compoplot (adegenet): specific 'STRUCTURE-like’ plot of group
membership probabilities for DAPC; see dedicated vignette (adegenet-
dapc).

e add.scatter (ade/): add inset plots to an existing figure.

e add.scatter.eig (ade4): specific application of add.scatter to add
barplots of eigenvalues to an existing figure.

In the sections below, we briefly illustrate how these tools can be combined to
extract information from genetic data.
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6.2 Performing a Principal Component Analysis on genind
objects

The tables contained in genind objects can be submitted to a Principal
Component Analysis (PCA) to seek a summary of the genetic diversity among
the sampled individuals. Such analysis is straightforward using adegenet to
prepare data and adej for the analysis per se. One has first to replace missing
data (NAs) and transform the allele frequencies in an appropriate way. These
operations are achieved by scaleGen. NAs are replaced by the mean allele
frequency; different scaling options are available (argument method), but in
general centring is sufficient since allele frequencies have inherently comparable
variances.

> data(microbov)

> sum(is.na(microbov$tab))

[1] 6325

There are 6325 missing data. They will all be replaced by scaleGen:

> X <- scaleGen(microbov, missing="mean"
> class(X)

[1] "matrix"
> dim(X)

[1] 704 373
> X[1:5,1:5]

INRA63.167 INRA63.171 INRA63.173 INRA63.175 INRA63.177
AFBIBOR9503 -0.03801312 -0.05379728 -0.101009 -1.061893 -0.8769237
AFBIBOR9504 -0.03801312 -0.05379728 -0.101009 -1.061893 -0.8769237
AFBIBOR9505 -0.03801312 -0.05379728 -0.101009 -1.061893 0.5498659
AFBIBOR9506 -0.03801312 -0.05379728 -0.101009 -1.061893 -0.8769237
AFBIBOR9507 -0.03801312 -0.05379728 -0.101009 -1.061893 0.5498659

Note that alternatively, we could have used na.replace to replace missing
data, and then left the centring/scaling to dudi.pca.

The analysis can now be performed. We disable the scaling in dudi.pca,
which would erase the scaling choice made earlier in scaleGen. Note: in
practice, retained axes can be chosen interactively by removing the arguments
scannf=FALSE ,nf=3.

> pcal <- dudi.pca(X,cent=FALSE,scale=FALSE,scannf=FALSE,nf=3)
> barplot(pcal$eig[1:50] ,main="PCA eigenvalues", col=heat.colors(50))
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PCA eigenvalues

15

10

> pcal

Duality diagramm
class: pca dudi
$call: dudi.pca(df = X, center = FALSE, scale = FALSE, scannf = FALSE,

nf = 3)

$nf: 3 axis-components saved

$rank: 343

eigen values: 17.04 9.829 6.105 4.212 3.887 ...
vector length mode content

1 $cw 373 numeric column weights

2 $1lw 704 numeric row weights

3 $eig 343 numeric eigen values
data.frame nrow ncol content

1 $tab 704 373 modified array

2 $1i 704 3 row coordinates

3 $11 704 3 row normed scores

4 $co 373 3 column coordinates

5 $ci 373 3 column normed scores

other elements: cent norm

The output object pcal is a list containing various information; of particular
interest are:

e $eig: the eigenvalues of the analysis, indicating the amount of variance
represented by each principal component (PC).

e $1i: the principal components of the analysis; these are the synthetic
variables summarizing the genetic diversity, usually visualized using
scatterplots.
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e $c1: the allele loadings, used to compute linear combinations forming the
PCs; squared, they represent the contribution to each PCs.

The basic scatterplot for this analysis can be obtained by:
> s.label(pcal$li)

> title("PCA of microbov dataset\naxes 1-2")
> add.scatter.eig(pcal$eig[1:20], 3,1,2)

PCA of microbov dataset
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However, this figure can largely be improved. First, we can use s.class to
represent both the genotypes and inertia ellipses for populations.

> s.class(pcal$li, pop(microbov))
> title("PCA of microbov dataset\naxes 1-2")
> add.scatter.eig(pcal$eig[1:20], 3,1,2)
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PCA of microbov dataset

Eigenvalues

This plane shows that the main structuring is between African an French breeds,
the second structure reflecting genetic diversity among African breeds. The third
axis reflects the diversity among French breeds:

> s.class(pcal$li,pop(microbov) ,xax=1,yax=3,sub="PCA 1-3",csub=2)

> title("PCA of microbov dataset\naxes 1-3")
> add.scatter.eig(pcal$eig[1:20] ,nf=3,xax=1,yax=3)
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PCA of microbov dataset
axes 1-3
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Overall, all breeds seem well differentiated. ~

However, we can yet improve these scatterplots, which are fortunately easy
to customize. For instance, we can remove the grid, choose different colors for
the groups, use larger dots and transparency to better assess the density of
points, and remove internal segments of the ellipses:

> col <- rainbow(length(levels(pop(microbov))))
> s.class(pcal$li, pop(microbov),xax=1,yax=3, col=transp(col,.6), axesell=FALSE, cstar=0, cpoint=3, grid=FALSE)
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Let us now assume that we ignore the group memberships. We can still
use color in an informative way. For instance, we can recode the principal
components represented in the scatterplot on the RGB scale:
> colorplot(pcal$li, pcal$li, transp=TRUE, cex=3, xlab="PC 1", ylab="PC 2")

> title("PCA of microbov dataset\naxes 1-2")
> abline(v=0,h=0,col="grey", 1lty=2)
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PCA of microbov dataset
axes 1-2

PC2

PC1

Colors are based on the first three PCs of the PCA, recoded respectively on the
red, green, and blue channel. In this figure, the genetic diversity is represented
in two complementary ways: by the distances (further away = more genetically
different), and by the colors (more different colors = more genetically different).

We can represent the diversity on the third axis similarly:
> colorplot(pcal$lilc(1,3)], pcal$li, transp=TRUE, cex=3, xlab="PC 1", ylab="PC 3")

> title("PCA of microbov dataset\naxes 1-3")
> abline(v=0,h=0,col="grey", 1lty=2)
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PCA of microbov dataset
axes 1-3
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6.3 Performing a Correspondance Analysis on genpop
objects

Being contingency tables, the @tab slot in genpop objects can be submitted

to a Correspondance Analysis (CA) to seek a typology of populations. The

approach is very similar to the previous one for PCA. Missing data are first

replaced during convertion from genind, but one could create a genpop with
NAs and then use na.replace to get rid of missing observations.

> data(microbov)
> obj <- genind2genpop(microbov,missing="chi2")

Converting data from a genind to a genpop object...
Replaced O missing values

...done.

> cal <- dudi.coa(as.data.frame(obj$tab),scannf=FALSE,nf=3)
> barplot(cal$eig,main="Correspondance Analysis eigenvalues", col=heat.colors(length(cal$eig)))
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Correspondance Analysis eigenvalues
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Now we display the resulting typology using a basic scatterplot:

0.00

> s.label(cal$li,lab=obj$pop.names,sub="CA 1-2",csub=2)
> add.scatter.eig(cal$eig,nf=3,xax=1,yax=2,posi="bottomright")
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> s.label(cal$li,xax=1,yax=3,lab=obj$pop.names,sub="CA 1-3", csub=2)
> add.scatter.eig(cal$eig,nf=3,xax=2,yax=3,posi="topleft")
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As in the PCA above, axes are to be interpreted separately in terms of
continental differentiation, and between-breeds diversity. Importantly, as in any
analysis carried out at a population level, all information about the diversity
within populations is lost in this analysis. See the vignette on DAPC for
an individual-based approach which is nontheless optimal in terms of group
separation (adegenet-dapc).

o1



7 Spatial analysis

The R software probably offers the largest collection of spatial methods among
statistical software. Here, we briefly illustrate two methods commonly used
in population genetics. Spatial multivariate analysis is covered in a dedicated
vignette; see adegenet-spca for more information.

7.1 Isolation by distance
7.1.1 Testing isolation by distance

Isolation by distance (IBD) is tested using Mantel test between a matrix of
genetic distances and a matrix of geographic distances. It can be tested using
individuals as well as populations. This example uses cat colonies from the city
of Nancy. We test the correlation between Edwards’ distances and Euclidean
geographic distances between colonies.

> data(nancycats)
> toto <- genind2genpop(nancycats,miss="0")

Converting data from a genind to a genpop object...
Replaced 9 missing values

...done.

Dgen <- dist.genpop(toto,method=2)
Dgeo <- dist(nancycats$other$xy)
ibd <- mantel.randtest(Dgen,Dgeo)
ibd

VvV VYV

Monte-Carlo test
Call: mantel.randtest(ml = Dgen, m2 = Dgeo)

Observation: 0.00492068

Based on 999 replicates
Simulated p-value: 0.483
Alternative hypothesis: greater

Std.0Obs Expectation Variance
0.0436119773 0.0005630704 0.0099835536

> plot(ibd)
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Histogram of sim
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The original value of the correlation between the distance matrices is represented
by the dot, while histograms represent permuted values (i.e., under the absence
of spatial structure). Significant spatial structure would therefore result in
the original value being out of the reference distribution. Here, isolation by
distance is clearly not significant.

Let us provide another example using a dataset of individuals simulated
under an IBD model:

data(spcalllus)

x <- spcalllus$dat2B

Dgen <- dist(x$tab)

Dgeo <- dist(other(x)$xy)

ibd <- mantel.randtest(Dgen,Dgeo)
ibd

VVVVVYV

Monte-Carlo test
Call: mantel.randtest(ml = Dgen, m2 = Dgeo)

Observation: 0.1267341

Based on 999 replicates
Simulated p-value: 0.002
Alternative hypothesis: greater

Std.0bs Expectation Variance
3.408485400 -0.001667123 0.001419108

> plot(ibd)
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Histogram of sim
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This time there is a clear isolation by distance pattern.

7.1.2 Cline or distant patches?

The correlation between genetic and geographic distances can occur under a
range of different biological scenarios. Classical IBD would result in continuous
clines of genetic differentiation and cause such correlation. However, distant
and differentiated populations would also result in such a pattern. These are
slightly different processes and we would like to be able to disentangle them. A
very simple first approach is simply plotting both distances:

> plot(Dgeo, Dgen)
> abline(1lm(Dgen~Dgeo), col="red",lty=2)
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Most of the time, simple scatterplots fail to provide a good picture of the data
as the density of points in the scatterplot is badly displayed. Colors can be
used to provide better (and prettier) plots. Local density is measured using a
2-dimensional kernel density estimation (kde2d), and the results are displayed
using image; colorRampPalette is used to generate a customized color palette:
dens <- kde2d(Dgeo,Dgen, n=300, lims=c(-.1, 1.5,-.5,4))

myPal <- colorRampPalette(c("white","blue","gold", "orange", "red"))

plot(Dgeo, Dgen, pch=20,cex=.5)

image (dens, col=transp(myPal(300),.7), add=TRUE)

abline (1Im(Dgen~Dgeo))
title("Isolation by distance plot")

V VVVVYV
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Isolation by distance plot

35

Dgen
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Dgeo

The scatterplot clearly shows one single consistent cloud of point, without
discontinuities which would have indicated patches. This is reassuring, since the
data were actually simulated under an IBD (continuous) model.

7.2 Using Monmonier’s algorithm to define genetic
boundaries

Monmonier’s algorithm [11] was originally designed to find boundaries of
maximum differences between contiguous polygons of a tesselation. As such,
the method was basically used in geographical analysis. More recently, [12]
suggested that this algorithm could be employed to detect genetic boundaries
among georeferecend genotypes (or populations). This algorithm is implemented
using a more general approach than the initial one in adegenet.

Instead of using Voronoi tesselation as in the original version, the functions
monmonier and optimize.monmonier can handle various neighbouring graphs
such as Delaunay triangulation, Gabriel’s graph, Relative Neighbours graph,
etc. These graphs define spatial connectivity among locations (of genotypes or
populations), with couple of locations being neighbours (if connected) or not.
Another information is given by a set of markers which define genetic distances
among these 'points’. The aim of Monmonier’s algorithm is to find the path
through the strongest genetic distances between neighbours. A more complete
description of the principle of this algorithm will be found in the documentation
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of monmonier. Indeed, the very purpose of this tutorial is simply to show how
it can be used on genetic data.

Let’s take the example from the function’s manpage and detail it. The
dataset used is sim2pop.

> data(sim2pop)
> sim2pop

### Genind object ###

- genotypes of individuals -

S4 class: genind
Q@call: old2new(object = sim2pop)

Q@tab: 130 x 241 matrix of genotypes

Q@ind.names: vector of 130 individual names

@loc.names: vector of 20 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 241 columns of Q@tab

Q@all.names: list of 20 components yielding allele names for each locus
Oploidy: 2

Q@type: codom

Optionnal contents:

@pop: factor giving the population of each individual

Q@pop.names: factor giving the population of each individual

Qother: a list containing: xy

> summary (sim2pop$pop)

PO1 P02

100 30

> temp <- sim2pop$pop

> levels(temp) <- c(3,5)

> temp <- as.numeric(as.character(temp))

> plot(sim2pop$other$xy,pch=temp,cex=1.5,xlab="'x"',ylab="y"')
> legend("topright",leg=c("Pop A", "Pop B"),pch=c(3,5))
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There are two sampled populations in this dataset, with inequal sample sizes
(100 and 30). Twenty microsatellite-like loci are available for all genotypes (no
missing data). monmonier requires several arguments to be specified:

> args(monmonier)

function (xy, dist, cn, threshold = NULL, bd.length = NULL, nrun = 1,
skip.local.diff = rep(0, nrun), scanthres = is.null(threshold),
allowLoop = TRUE)

NULL

The first argument (xy) is a matrix of geographic coordinates, already stored
in sim2pop. Next argument is an object of class dist, which is the matrix of
pairwise genetic distances. For now, we will use the classical Euclidean distance
between allelic profiles of the individuals. This is obtained by:

> D <- dist(sim2pop$tab)
The next argument (cn) is a connection network. Routines for building such
networks are scattered over several packages, but all made available through

the function chooseCN. Here, we disable the interactivity of the function
(ask=FALSE) and select the second type of graph which is the graph of Gabriel

(type=2).

> gab <- chooseCN(sim2pop$other$xy,ask=FALSE, type=2)
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The obtained network is automatically plotted by the function. It seems we are
now ready to proceed to the algorithm.

> monl <- monmonier (sim2pop$other$xy,D,gab)

i

Local distances plot
Dashed line indicates present threshold

Sored local distances

0 100 200 300 400

rank

This plot shows all local differences sorted in decreasing order. The idea behind
this is that a significant boundary would cause local differences to decrease
abruptly after the boundary. This should be used to choose the threshold
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difference for the algorithm to stop extending the boundary. Here, there is no
indication af an actual boundary.

Why do the algorithm fail to find a boundary? Either because there is no
genetic differentiation to be found, or because the signal differentiating both
populations is too weak to overcome the random noise in genetic distances.
What is the Fy; between the two samples?

> pairwise.fst(sim2pop)

1
2 0.02343044

This value would be considered as very weak differentiation (Fsr = 0.023). Is
it significant? We can easily ellaborate a permutation test of this Figp value; to
save computational time, we use only a small number of replicates to generate
Fsr values in absence of population structure:

> replicate(10, pairwise.fst(sim2pop, pop=sample (pop(sim2pop))))

[1] 0.004147630 0.004111453 0.003350928 0.003630473 0.003785866 0.002897080
[7] 0.003087005 0.003717625 0.003725847 0.004322756

Fsr values in absence of population structure would be one order of magnitude
lower (more replicate would give a very low p-value — just replace 10 by
200 in the above command). In fact, the two samples are indeed genetically
differentiated.

Can Monmonier’s algorithm find a boundary between the two populations?
Yes, if we get rid of the random noise. This can be achieved using a simple
ordination method such as Principal Coordinates Analysis.

> library(ade4)
> pcol <- dudi.pco(D,scannf=FALSE,nf=1)
> barplot(pcol$eig,main="Eigenvalues")
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We retain only the first eigenvalue. The corresponding coordinates are used to
redefine the genetic distances among genotypes. The algorithm is then re-run.

> D <- dist(pcol$li)

> monl <- monmonier (sim2pop$other$xy,D,gab)

Local distances plot
Dashed line indicates present threshold
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# List of paths of maximum differences between neighbours #
Using a Monmonier based algorithm #

$call:monmonier(xy = sim2pop$other$xy, dist = D, cn = gab, scanthres = FALSE)

# Object content #
Class: monmonier
$nrun (number of successive runs): 1
$runl: run of the algorithm

$threshold (minimum difference between neighbours): 0.8154
$xy: spatial coordinates
$cn: connection network

# Runs content #
# Run 1
# First direction
Class: 1list
$path:

X
Point_1 14.98299 93.8116%
$values:
2.281778
# Second direction
Class: 1list
$path:
X y
Point_1 14.98299 93.81162

Point_2 30.74508 87.57724
Point_3 33.66093 86.14115

$values:
2.281778 1.617905 1.95322 ...

This may take some time... but never more than five minutes on an ’ordinary’
personnal computer. The object monl contains the whole information about
the boundaries found. As several boundaries can be seeked at the same time
(argument nrun), you have to specify about which run and which direction
you want to get informations (values of differences or path coordinates). For
instance:

> names (mon1)

[1] "run1" "nrun" "threshold" "xy" "cn" "call"
> names (moni$runi)

[1] "dir1" "dir2"

> moni$runi$dirl

$path
X y
Point_1 14.98299 93.81162

$values
[1] 2.281778

It can also be useful to identify which points are crossed by the barrier; this can
be done using coords.monmonier:
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> coords.monmonier (monl)

$runi
$runi$diri

x.hw .hw first second
Point_1 14.98299 93.81162 11 125

$run1$dir2

X.hw y.hw first second
Point_1 14.98299 93.81162 11 125
Point_2 30.74508 87.57724 44 128
Point_3 33.66093 86.14115 20 128
Point_4 35.28914 81.12578 68 128
Point_5 33.85756 74.45492 68 117
Point_6 38.07622 71.47532 68 122
Point_7 41.97494 70.02783 35 122
Point_8 43.45812 67.12026 69 122
Point_9 42.20206 59.59613 22 122
Point_10 42.48613 52.55145 22 124
Point_11 40.08702 48.61795 13 124
Point_12 39.20791 43.89978 13 127
Point_13 38.81236 40.34516 62 127
Point_14 37.32112 36.35265 62 130
Point_15 37.96426 30.82105 94 130
Point_16 32.79703 28.00517 16 130
Point_17 30.12832 28.60376 85 130

Point_18 20.92496 29.21211 63 119
Point_19 16.05811 22.72600 61 126
Point_20 11.72524 21.15519 89 126
Point_21 10.18696 16.61536 74 89

The returned dataframe contains, in this order, the x and y coordinates of the
points of the barrier, and the identifiers of the two ’parent’ points, that is, the
points whose barycenter is the point of the barrier.

Finally, you can plot very simply the obtained boundary using the method
plot:

> plot (monl)
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see arguments in ?plot.monmonier to customize this representation. Last, we
can compare the infered boundary with the actual distribution of populations:

plot(monl,add.arrows=FALSE,bwd=38)

temp <- sim2pop$pop

levels(temp) <- c(3,5)

temp <- as.numeric(as.character(temp))
points(sim2pop$other$xy,pch=temp,cex=1.3)
legend("topright",leg=c("Pop A", "Pop B"),pch=c(3,5))

VVVVVYV
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Not too bad...

8 Simulating hybridization

The function hybridize allows to simulate hybridization between individuals
from two distinct genetic pools, or more broadly between two genind objects.
Here, we use the example from the manpage of the function, to go a little
further. Please have a look at the documentation, especially at the different
possible outputs (outputs for the software STRUCTURE is notably available).

> temp <- seppop(microbov)
> names (temp)

[1] "Borgou" "Zebu" "Lagunaire" "NDama"

[5] "Somba" "Aubrac" "Bazadais" "BlondeAquitaine"
[[9% "BretPieNoire" "Charolais" "Gascon" "Limousin"

13] "MaineAnjou" "Montbeliard" "Salers"

> salers <- temp$Salers
> zebu <- temp$Zebu
> zebler <- hybridize(salers, zebu, n=40, pop="zebler")

A first generation (F1) of hybrids 'zebler’ is obtained. Is it possible to perform
a backcross, say, with ’salers’ population? Yes, here it is:
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> F2 <- hybridize(salers, zebler, n=40)
> F3 <- hybridize(salers, F2, n=40)
> F4 <- hybridize(salers, F3, n=40)

Finally, note that despite this example shows hybridization between diploid
organisms, hybridize is not retrained to this case. In fact, organisms with any
even level of ploidy can be used, in which case half of the genes is taken from
each reference population. Ultimately, more complex mating schemes could be
implemented... suggestion or (better) contributions are welcome!
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