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Abstract

This vignette provides a tutorial for the spatial analysis of principal
components (sPCA, [1]) using the adegenet package [2] for the R software
[3]. sPCA is first illustrated using a simple simulated dataset, and then
using empirical data of Chamois (Rupicapra rupicapra) from the Bauges
mountains (France). In particular, we illustrate how sPCA complements
classical PCA by being more powerful for retrieving non-trivial spatial
genetic patterns.
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1 Introduction

This tutorial goes through the spatial Principal Component Analysis (sPCA,
[1]), a multivariate method devoted to the identification of spatial genetic
patterns. The purpose of this tutorial is to provide guidelines for the application
of sPCA as well as to illustrate its usefulness for the investigation of spatial
genetic patterns. After briefly going through the rationale of the method, we
introduce the different tools implemented for sPCA in adegenet. This technical
overview is then followed by the analysis of an empirical dataset which illustrates
the advantage of sPCA over classical PCA for investigating spatial patterns.

1.1 Rationale of sPCA

Mathematical notations used in this tutorial are identical to the original
publication [1]. The sPCA analyses a matrix of relative allele frequencies X

which contains genotypes or populations (later refered to as ’entities’) in rows
and alleles in columns. Spatial information is stored inside a spatial weighting
matrix L which contains positive terms corresponding to some measurement
(often binary) of spatial proximity among entities. Most often, these terms can
be derived from a connection network built upon a given algorithm (for instance,
pp.572-576 in [4]). This matrix is row-standardized (i.e., each of its rows sums
to one), and all its diagonal terms are zero. L can be used to compute the
spatial autocorrelation of a given centred variable x (i.e., with mean zero)
with n observations (x ∈ R

n) using Moran’s I [5, 6, 7]:

I(x) =
xTLx

xTx
(1)

In the case of genetic data, x contains frequencies of an allele. Moran’s
I can be used to measure spatial structure in the values of x: it is highly
positive when values of x observed at neighbouring sites tend to be similar
(positive spatial autocorrelation, referred to as global structures), while
it is strongly negative when values of x observed at neighbouring sites tend
to be dissimilar (negative spatial autocorrelation, referred to as local structures).

However, since it is standardized by the variance of x, Moran’s index
measures only spatial structures and not genetic variability. The sPCA defines
the following function to measure both spatial structure and variability in x:

C(x) = var(x)I(x) =
1

n
xTLx (2)

C(x) is highly positive when x has a large variance and exhibits a global
structure; conversely, it is largely negative when x has a high variance and
displays a local structure. This function is the criterion used in sPCA, which
finds linear combinations of the alleles of X (denoted Xv) decomposing C from
its maximum to its minimum value. Because C(Xv) is a product of variance
and autocorrelation, it is important, when interpreting the results, to detail
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both components and to compare their value with their range of variation
(maximum attainable variance, as well as maximum and minimum I are known
analytically). A structure with a low spatial autocorrelation can barely be
interpreted as a spatial pattern; similarly, a structure with a low variance would
likely not reflect any genetic structure. We will later see how these information
can be retrieved from spca results.

1.2 The spca function

The simulated dataset used to illustrate this section has been analyzed in [1],
and corresponds to Figure 2A of the article. In adegenet, the matrix of alleles
frequencies previously denotedX exactly corresponds to the @tab slot of genind
or genpop objects:

> library(adegenet)
> library(adehabitat)
> data(spcaIllus)
> obj <- spcaIllus$dat2A
> obj

#####################
### Genind object ###
#####################

- genotypes of individuals -

S4 class: genind
@call: old2new(object = obj)

@tab: 80 x 192 matrix of genotypes

@ind.names: vector of 80 individual names
@loc.names: vector of 20 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 192 columns of @tab
@all.names: list of 20 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

@other: a list containing: xy

> head(truenames(obj[loc="L01"])$tab)

L01.1 L01.2 L01.3 L01.4 L01.5 L01.6 L01.7 L01.8 L01.9
0035 0 0 0.0 0 0.5 0.5 0 0.0 0.0
0352 0 0 0.5 0 0.5 0.0 0 0.0 0.0
0423 0 0 0.0 0 0.5 0.0 0 0.0 0.5
0289 0 0 0.0 0 0.0 0.5 0 0.0 0.5
0487 0 0 0.0 0 0.0 0.5 0 0.5 0.0
0053 0 0 0.0 0 0.5 0.5 0 0.0 0.0

The object obj is a genind object; note that here, we only displayed the table
for the first locus (loc="L01").

The function performing the sPCA is spca; it accepts a bunch of arguments,
but only the first two are mandatory to perform the analysis (see ?spca for
further information):
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> args(spca)

function (obj, xy = NULL, cn = NULL, matWeight = NULL, scale = FALSE,
scale.method = c("sigma", "binom"), scannf = TRUE, nfposi = 1,
nfnega = 1, type = NULL, ask = TRUE, plot.nb = TRUE, edit.nb = FALSE,
truenames = TRUE, d1 = NULL, d2 = NULL, k = NULL, a = NULL,
dmin = NULL)

NULL

The argument obj is a genind/genpop object. By definition in sPCA, the
studied entities are georeferenced. The spatial information can be provided to
the function spca in several ways, the first being through the xy argument,
which is a matrix of spatial coordinates with ’x’ and ’y’ coordinates in columns.
Alternatively, these coordinates can be stored inside the genind/genpop object,
preferably as @other$xy, in which case the spca function will detect and use
this information, and not request an xy argument. Note that obj already
contains spatial coordinates at the appropriate place. Hence, we can use the
following command to run the sPCA (ask and scannf are set to FALSE to
avoid interactivity):

> mySpca <- spca(obj, ask=FALSE, type=1, scannf=FALSE)

PLEASE NOTE: The components "delsgs" and "summary" of the
object returned by deldir() are now DATA FRAMES rather than
matrices (as they were prior to release 0.0-18).
See help("deldir").

PLEASE NOTE: The process that deldir() uses for determining
duplicated points has changed from that used in version
0.0-9 of this package (and previously). See help("deldir").

˜

Note, however, that spatial coordinates are not directly used in sPCA: the
spatial information is included in the analysis by the spatial weighting matrix
L derived from a connection network (eq. 1 and 2). Technically, the spca

function can incorporate spatial weightings as a matrix (argument matWeight),
as a connection network with the classes nb or listw (argument cn), both
implemented in the spdep package. The function chooseCN is a wrapper for
different functions scattered across several packages implementing a variety
of connection networks. If only spatial coordinates are provided to spca,
chooseCN is called to construct an appropriate graph. See ?chooseCN for more
information. Note that many of the spca arguments are in fact arguments for
chooseCN: type, ask, plot.nb, edit.nb, d1, d2, k, a, and dmin. For instance,
the command:

> mySpca <- spca(obj,type=1,ask=FALSE,scannf=FALSE)

performs a sPCA using the Delaunay triangulation as connection network
(type=1, see ?chooseCN), while the command:

> mySpca <- spca(obj,type=5,d1=0,d2=2,scannf=FALSE)

5



computes a sPCA using a connection network which defines neighbouring
entities based on pairwise geographic distances (type=5), considering as
neighbours two entities whose distance between 0 (d1=0) and 2 (d2=2).

Another possibility is of course to provide directly a connection network (nb
object) or a list of spatial weights (listw object) to the spca function; this can
be done via the cn argument. For instance:

> myCn <- chooseCN(obj$other$xy, type=6, k=10, plot=FALSE)
> myCn

Neighbour list object:
Number of regions: 80
Number of nonzero links: 932
Percentage nonzero weights: 14.5625
Average number of links: 11.65

> class(myCn)

[1] "nb"

> mySpca2 <- spca(obj,cn=myCn,scannf=FALSE)

produces a sPCA using myCn (k = 10 nearest neighbours) as a connection
network.

When used interactively (scannf=TRUE), spca displays a barplot of
eigenvalues and asks the user for a number of positive axes (’first number of
axes’) and negative axes (’second number of axes’) to be retained. For the object
mySpca, this barplot would be (here we indicate in red the retained eigenvalue):

> barplot(mySpca$eig,main="Eigenvalues of sPCA", col=rep(c("red","grey"),c(1,100)))
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Eigenvalues of sPCA
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Positive eigenvalues (on the left) correspond to global structures, while negative
eigenvalues (on the right) indicate local patterns. Actual structures should
result in more extreme (positive or negative) eigenvalues; for instance, the object
mySpca likely contains one single global structure, and no local structure. If
one does not want to choose the number of retained axes interactively, the
arguments nfposi (number of retained factors with positive eigenvalues) and
nfnega (number of retained factors with negative eigenvalues) can be used.
Once this information has been provided to spca, the analysis is computed and
stored inside an object with the class spca.

1.3 Contents of a spca object

Let us consider a spca object resulting from the analysis of the object obj, using
a Delaunay triangulation (type=1) as connection network:

> mySpca <- spca(obj,type=1,scannf=FALSE,plot.nb=FALSE,nfposi=1,nfnega=0)
> class(mySpca)

[1] "spca"

> mySpca
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########################################
# spatial Principal Component Analysis #
########################################

class: spca
$call: spca(obj = obj, scannf = FALSE, nfposi = 1, nfnega = 0, type = 1,

plot.nb = FALSE)

$nfposi: 1 axis-components saved
$nfnega: 0 axis-components saved
Positive eigenvalues: 0.2309 0.1118 0.09379 0.07817 0.06911 ...
Negative eigenvalues: -0.08421 -0.07376 -0.06978 -0.06648 -0.06279 ...

vector length mode content
1 $eig 79 numeric eigenvalues

data.frame nrow ncol content
1 $c1 192 1 principal axes: scaled vectors of alleles loadings
2 $li 80 1 principal components: coordinates of entities ('scores')
3 $ls 80 1 lag vector of principal components
4 $as 2 1 pca axes onto spca axes

$xy: matrix of spatial coordinates
$lw: a list of spatial weights (class 'listw')

other elements: NULL

An spca object is a list containing all required information about a performed
sPCA. Details about the different components of such a list can be found in the
spca documentation (?spca). The purpose of this section is to explicit how the
elements described in [1] are stored inside a spca object.

First, eigenvalues of the analysis are stored inside the $eig component as a
numeric vector stored in decreasing order:

> head(mySpca$eig)

[1] 0.23087862 0.11184721 0.09378750 0.07816561 0.06910536 0.06429596

> tail(mySpca$eig)

[1] -0.05480010 -0.06279067 -0.06647896 -0.06978457 -0.07375563 -0.08421213

> length(mySpca$eig)

[1] 79

> myPal <- colorRampPalette(c("red","grey","blue"))
> barplot(mySpca$eig, main="A variant of the plot\n of sPCA eigenvalues", col=myPal(length(mySpca$eig)))
> legend("topright", fill=c("red","blue"), leg=c("Global structures", "Local structures"))
> abline(h=0,col="grey")
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 of sPCA eigenvalues
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The axes of the analysis, denoted v in eq. (4) [1] are stored as columns inside
the $c1 component. Each column contains loadings for all the alleles:

> head(mySpca$c1)

Axis 1
L01.1 1.268838e-02
L01.2 1.665335e-16
L01.3 -1.119979e-01
L01.4 -4.440892e-16
L01.5 -2.766095e-02
L01.6 -4.477031e-02

> tail(mySpca$c1)

Axis 1
L20.3 0.28715850
L20.4 0.01485180
L20.5 -0.01500353
L20.6 0.01659481
L20.7 -0.14260743
L20.8 -0.15388988

> dim(mySpca$c1)

[1] 192 1
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The entity scores, denoted ψ = Xv in the article, are stored in columns in the
$li component:

> head(mySpca$li)

Axis 1
0035 -0.4367748
0352 -0.8052723
0423 -0.4337114
0289 0.1434650
0487 -0.4802931
0053 -0.5421831

> tail(mySpca$li)

Axis 1
1074 -0.06178196
1187 -0.08144162
1260 0.41491795
1038 0.25643986
1434 0.35618737
1218 0.21433977

> dim(mySpca$li)

[1] 80 1

The lag vectors of the scores can be used to better perceive global structures.
Lag vectors are stored in the $ls component:

> head(mySpca$ls)

Axis 1
0035 -0.7076732
0352 -0.6321654
0423 -0.4822952
0289 0.3947791
0487 -0.2803381
0053 -0.4848376

> tail(mySpca$ls)

Axis 1
1074 0.4930238
1187 -0.8384871
1260 0.6887072
1038 0.3665794
1434 0.3109197
1218 0.3329688

> dim(mySpca$ls)

[1] 80 1

Lastly, we can compare the axes of an classical PCA (denoted u in the paper)
to the axes of the sPCA (v). This is achieved by projecting u onto v, but this
projection is a particular one: because both u and v are centred to mean zero
and scaled to unit variance, the value of the projection simply is the correlation
between both axes. This information is stored inside the $as component:

> mySpca$as

Axis 1
PCA Axis1 -0.7363595
PCA Axis2 0.3395674
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1.4 Graphical display of spca results

The information contained inside a spca object can be displayed in several
ways. While we have seen that a simple barplot of sPCA eigenvalues can give
a first idea of the global and local structures to be retained, we have also
seen that each eigenvalue can be decomposed into a variance and a spatial

autocorrelation (Moran’s I) component. This information is provided by the
summary function, but it can also be represented graphically. The corresponding
function is screeplot, and can be used on any spca object:

> screeplot(mySpca)
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Spatial and variance components of the eigenvalues

The resulting figure represents eigenvalues of sPCA (denoted λi with
i = 1, . . . , r, where λ1 is the highest positive eigenvalue, and λr is the highest
negative eigenvalue) according the their variance and Moran’s I components.
These eigenvalues are contained inside a rectangle indicated in dashed lines.
The maximum attainable variance by a linear combination of alleles is the
one from an ordinary PCA, indicated by the vertical dashed line on the right.
The two horizontal dashed lines indicate the range of variation of Moran’s
I, given the spatial weighting matrix that was used. This figure is useful to
assess whether a given score of entities contains relatively enough variability
and spatial structuring to be interpreted. For instance, here, λ1 clearly is the
largest eigenvalue in terms of variance and of spatial autocorrelation, and can
be well distinguished from all the other eigenvalues. Hence, only the first global
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structure, associated to λ1, should be interpreted.

The global and local tests proposed in [1] can be used to reinforce the decision
of interpreting or not interpreting global and local structures. Each test can
detect the presence of one kind of structure. We can apply them to the object
obj, used in our sPCA:

> myGtest <- global.rtest(obj$tab,mySpca$lw,nperm=99)
> myGtest

Monte-Carlo test
Call: global.rtest(X = obj$tab, listw = mySpca$lw, nperm = 99)

Observation: 0.01658103

Based on 99 replicates
Simulated p-value: 0.01
Alternative hypothesis: greater

Std.Obs Expectation Variance
4.750208e+00 1.278277e-02 6.393592e-07

> plot(myGtest)
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The produced object is a randtest object (see ?randtest), which is the class
of objects for Monte-Carlo tests in the ade4 package. As shown, such object
can be plotted using a plot function: the resulting figure shows an histogram of
permuted test statistics and indicates the observed statistics by a black dot and
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a segment. Here, the plot clearly shows that the oberved test statistic is larger
than most simulated values, leading to a likely rejection of the null hypothesis
of absence of spatial structure. Note that because 99 permutations were used,
the p-value cannot be lower than 0.01. In practice, more permutations should
be used (like 999 or 9999 for results intended to be published).

The same can be done with the local test, which here we do not expect to
be significant:

> myLtest <- local.rtest(obj$tab,mySpca$lw,nperm=99)
> myLtest

Monte-Carlo test
Call: local.rtest(X = obj$tab, listw = mySpca$lw, nperm = 99)

Observation: 0.01397349

Based on 99 replicates
Simulated p-value: 0.2
Alternative hypothesis: greater

Std.Obs Expectation Variance
8.488325e-01 1.321218e-02 8.044154e-07

> plot(myLtest)
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˜

Once we have an idea of which structures shall be interpreted, we can try
to visualize spatial genetic patterns. There are several ways to do so. The first,
most simple approach is through the function plot (see ?plot.spca):
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> plot(mySpca)

This figure displays various information, that we detail from the top to
bottom and from left to right (also see ?plot.spca). The first plot shows
the connection network that was used to define spatial weightings. The
second, third, and fourth plots are different representations of a score of
entities in space, the first global score being the default (argument axis).
In each, the values of scores ($li[,axis] component of the spca object)
are represented using black and white symbols (a variant being grey levels):
white for negative values, and black for positive values. The second plot
is a local interpolation of scores (function s.image in ade4 ), using grey
levels, with contour lines. The closer the contour lines are from each other,
the stepest the genetic differentiation is. The third plot uses different sizes
of squares to represent different absolute values (s.value in ade4 ): large
black squares are well differentiated from large white squares, but small
squares are less differentiated. The fourth plot is a variant using grey levels
(s.value in ade4, with ’greylevel’ method). Here, all the three representations
of the first global score show that genotypes are splitted in two genetical
clusters, one in the west (or left) and one in the east (right). The last two
plots of the plot.spca function are the two already seen displays of eigenvalues.

While the default plot function for spca objects provides a useful summary
of the results, more flexible tools are needed e.g. to map the principal
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components onto the geographic space. This can be achieved using the
colorplot function. This function can summarize up to three scores at the
same time by translating each score into a channel of color (red, green, and
blue). The obtained values are used to compose a color using the RGB system.
See ?colorplot for details about this function. The original idea of such
representation is due to [8]. Despite the colorplot clearly is more powerful
to represent more than one score on a single map, we can use it to represent the
first global structure that was retained in mySpca:

> colorplot(mySpca,cex=3,main="colorplot of mySpca, first global score")
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See examples in ?colorplot and ?spca for more examples of applications of
colorplot to represent sPCA scores.

Another common practice is interpolating principal components to get maps
of genetic clines. Note that it is crucial to perform this interpolation after the
analysis, and not before, which would add artefactual structures to the data.
Interpolation is easy to realize using interp from the akima package, and image,
or filled.contour to display the results:

> library(akima)
> x <- other(obj)$xy[,1]
> y <- other(obj)$xy[,2]

> temp <- interp(x, y, mySpca$li[,1])
> image(temp)
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Note that for better clarity, we can use the lagged principal scores ($ls) rather
than the original scores ($li); we also achieve a better resolution using specific
interpolated coordinates:

> interpX <- seq(min(x),max(x),le=200)
> interpY <- seq(min(y),max(y),le=200)
> temp <- interp(x, y, mySpca$ls[,1], xo=interpX, yo=interpY)
> image(temp)
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Alternatively, filled.contour can be used for the display, and a customized
color palette can be specified:

> myPal <- colorRampPalette(c("firebrick2", "white", "lightslateblue"))
> annot <- function(){
+ title("sPCA - interpolated map of individual scores")
+ points(x,y)
+ }
> filled.contour(temp, color.pal=myPal, nlev=50, key.title=title("lagged \nscore 1"), plot.title=annot())
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Besides assessing spatial patterns, it is sometimes valuable to assess which
alleles actually exhibit the structure of interest. In sPCA, the contribution of
alleles to a specific structure is given by the corresponding squared loading. We
can look for the alleles contributing most to e.g. the first axis of sPCA, using the
function loadingplot (see ?loadingplot for a description of the arguments):

> myLoadings <- mySpca$c1[,1]^2
> names(myLoadings) <- rownames(mySpca$c1)
> loadingplot(myLoadings, xlab="Alleles",
+ ylab="Weight of the alleles",
+ main="Contribution of alleles \n to the first sPCA axis")

18



0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Contribution of alleles 
 to the first sPCA axis

Alleles

W
ei

gh
t o

f t
he

 a
lle

le
s

L01.3

L01.8
L01.9L02.05L02.09

L03.4
L03.5L04.1

L04.2
L05.8

L05.9L06.07L06.08
L07.3

L08.06L08.07

L09.01

L09.05L09.06

L10.5

L11.4

L11.5L11.6

L12.4

L12.7

L12.8

L13.05

L13.06
L14.03L14.05

L14.11

L15.03L15.09

L16.02L16.10

L17.1

L17.2

L17.4

L17.6
L17.7

L18.05L18.06

L19.04

L19.05

L19.12

L20.3

L20.7
L20.8

See ?loadingplot for more information about this function, in particular for the
definition of the threshold value above which alleles are annotated. Note that
it is possible to also separate the alleles by markers, using the fac argument,
to assess if all markers have comparable contributions to a given structure.
In our case, we would only have to specify fac=obj@loc.fac; also note that
loadingplot invisibly returns information about the alleles whose contribution
is above the threshold. For instance, to identify the 5% of alleles with the
greatest contributions to the first global structure in mySpca, we need:

> temp <- loadingplot(myLoadings, threshold=quantile(myLoadings, 0.95),
+ xlab="Alleles",ylab="Weight of the alleles",
+ main="Contribution of alleles \n to the first sPCA axis",
+ fac=obj$loc.fac, cex.fac=0.6)
> temp

$threshold
95%

0.02345973

$var.names
[1] "L08.06" "L08.07" "L11.4" "L12.4" "L14.11" "L16.02" "L16.10" "L17.2"
[9] "L20.3" "L20.8"

$var.idx
L08.06 L08.07 L11.4 L12.4 L14.11 L16.02 L16.10 L17.2 L20.3 L20.8

71 72 99 105 130 146 154 157 187 192

$var.values
L08.06 L08.07 L11.4 L12.4 L14.11 L16.02 L16.10

0.03044687 0.03037709 0.06111338 0.03199067 0.02799529 0.02873923 0.02806079
L17.2 L20.3 L20.8

0.05793290 0.08246000 0.02368209
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But to assess the average contribution of each marker, the boxplot probably
is a better tool:

> boxplot(myLoadings~obj$loc.fac, las=3, ylab="Contribution", xlab="Marker",
+ main="Contributions by markers \nto the first global score", col="grey")
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2 Case study: spatial genetic structure of the

chamois in the Bauges mountains

The chamois (Rupicapra rupicapra) is a conserved species in France. The
Bauges mountains is a protected area in which the species has been recently
studied. One of the most important questions for conservation purposes relates
to whether individuals from this area form a single reproductive unit, or whether
they are structured into sub-groups, and if so, what causes are likely to induce
this structuring.

While field observations are very scarce and do not allow to answer this
question, genetic data can be used to tackle the issue, as departure from
panmixia should result in genetic structuring. The dataset rupica contains
335 georeferenced genotypes of Chamois from the Bauges mountains for 9
microsatellite markers, which we propose to analyse.

2.1 An overview of the data

We first load the data:

> data(rupica)
> rupica
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#####################
### Genind object ###
#####################

- genotypes of individuals -

S4 class: genind
@call: NULL

@tab: 335 x 55 matrix of genotypes

@ind.names: vector of 335 individual names
@loc.names: vector of 9 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 55 columns of @tab
@all.names: list of 9 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: - empty -
@pop.names: - empty -

@other: a list containing: xy mnt showBauges

rupica is a genind object, that is, the class of objects storing genotypes (as
opposed to population data) in adegenet. rupica also contains topographic
information about the sampled area, which can be displayed by calling
rupica$other$showBauges. Altitude maps are displayed using the adehabitat

package [9]. The spatial distribution of the sampling can be displayed as follows:

> rupica$other$showBauges()
> points(rupica$other$xy, col="red",pch=20)
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This spatial distribution is clearly not random, but seems arranged into loose
clusters. However, superimposed samples can bias our visual assessment of the
spatial clustering. Use a two-dimensional kernel density estimation (function
s.kde2d) to overcome this possible issue.

> rupica$other$showBauges()
> s.kde2d(rupica$other$xy,add.plot=TRUE)
> points(rupica$other$xy, col="red",pch=20)

Unfortunately, geographical clustering is not strong enough to assign
unambiguously each individual to a group. Therefore, we need to carry all
analyses at the individual level, which precludes the use of most population
genetics tools.

2.2 Summarising the genetic diversity

As a prior clustering of genotypes is not known, we cannot employ usual FST -
based approaches to detect genetic structuring. However, genetic structure could
still result in a deficit of heterozygosity. Use the summary of genind objects to
compare expected and observed heterozygosity:

> rupica.smry <- summary(rupica)

# Total number of genotypes: 335

# Population sample sizes:
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335

# Number of alleles per locus:
L1 L2 L3 L4 L5 L6 L7 L8 L9
7 10 7 6 5 5 6 4 5

# Number of alleles per population:
1
55

# Percentage of missing data:
[1] 0

# Observed heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.5880597 0.6208955 0.5253731 0.7582090 0.6597015 0.5283582 0.6298507 0.5552239
L9

0.4149254

# Expected heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.6076769 0.6532517 0.5314591 0.7259657 0.6601604 0.5706082 0.6412742 0.5473112
L9

0.4070709

> plot(rupica.smry$Hobs, rupica.smry$Hexp, main="Observed vs expected heterozygosity")
> abline(0,1,col="red")
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The red line indicate identity between both quantities. Observed heterozygosity
do not seem to deviate massively from theoretical expectations. This is
confirmed by a classical pairwise t-test::

> t.test(rupica.smry$Hexp, rupica.smry$Hobs,paired=TRUE,var.equal=TRUE)
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Paired t-test

data: rupica.smry$Hexp and rupica.smry$Hobs
t = 0.9461, df = 8, p-value = 0.3718
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.01025068 0.02451318
sample estimates:
mean of the differences

0.007131251

˜

We can seek a global picture of the genetic diversity among genotypes using a
Principal Component Analysis (PCA, function dudi.pca in the ade4 package).
The analysis is performed on a table of standardized alleles frequencies, obtained
by scaleGen (use the binomial scaling option). Note that we disable the scaling
option when performing the PCA, which would otherwise re-scale the data
and therefore erase the previous scaling of scaleGen. The function dudi.pca

displays a barplot of eigenvalues and asks for a number of retained principal
components:

> rupica.X <- scaleGen(rupica, method="binom")
> rupica.pca1 <- dudi.pca(rupica.X, cent=FALSE, scale=FALSE, scannf=FALSE, nf=2)
> barplot(rupica.pca1$eig, main="Rupica dataset - PCA eigenvalues",
+ col=heat.colors(length(rupica.pca1$eig)))

Rupica dataset − PCA eigenvalues

0.
0

0.
5

1.
0

1.
5

The output produced by dudi.pca is a dudi object. A dudi object contains
various information; in the case of PCA, principal axes (loadings), principal
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components (synthetic variable), and eigenvalues are respectively stored in $c1,
$li, and $eig slots. Here is the content of the PCA:

> rupica.pca1

Duality diagramm
class: pca dudi
$call: dudi.pca(df = rupica.X, center = FALSE, scale = FALSE, scannf = FALSE,

nf = 2)

$nf: 2 axis-components saved
$rank: 45
eigen values: 1.561 1.34 1.168 1.097 1.071 ...

vector length mode content
1 $cw 55 numeric column weights
2 $lw 335 numeric row weights
3 $eig 45 numeric eigen values

data.frame nrow ncol content
1 $tab 335 55 modified array
2 $li 335 2 row coordinates
3 $l1 335 2 row normed scores
4 $co 55 2 column coordinates
5 $c1 55 2 column normed scores
other elements: cent norm

In general, eigenvalues represent the amount of genetic diversity — as
measured by the multivariate method being used — represented by each
principal component (PC). An abrupt decrease in eigenvalues is likely to
indicate the boundary between true patterns and non-interpretable structures.
In this case, the first two PCs may contain some relevant biological signal.

We can use s.label to display the two first components of the analysis.
Kernel density estimation (s.kde2d) is used for a better assessment of the
distribution of the genotypes onto the principal axes:

> s.label(rupica.pca1$li)
> s.kde2d(rupica.pca1$li, add.p=TRUE, cpoint=0)
> add.scatter.eig(rupica.pca1$eig,2,1,2)
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This scatterplot shows that the only structure identified by PCA points to a
few outliers. loadingplot confirms that this corresponds to the possession of a
few original alleles:

> loadingplot(rupica.pca1$c1^2)
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We can go back to the genotypes for the concerned markers (e.g., Bm203) to
check whether the highlighted genotypes are uncommon. truenames extracts
the table of allele frequencies from a genind object (restoring original labels for
markers, alleles, and individuals):

> X <- truenames(rupica)
> class(X)

[1] "matrix"

> dim(X)

[1] 335 55

> bm203.221 <- X[,"Bm203.221"]
> table(bm203.221)

bm203.221
0 0.00597014925373134 0.5

330 1 4

Only 4 genotypes possess one copy of the allele 221 of marker bm203 (the second
result corresponds to a replaced missing data). Which individuals are they?

> rownames(X)[bm203.221==0.5]
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001 019 029 276
"8" "86" "600" "7385"

These are indeed our outliers. From the point of view of PCA, this would be
the only structure in the data. However, further analyses show that more is to
be seen...

2.3 Mapping and testing PCA results

A frequent practice in spatial genetics is mapping the first principal components
(PCs) onto the geographic space. ade4 ’s function s.value is well-suited to do
so, using black and white squares of variable size for positive and negative values.
To give a legend for this type of representation:

> s.value(cbind(1:11,rep(1,11)), -5:5, cleg=0)
> text(1:11,rep(1,11), -5:5, col="red",cex=1.5)

 d = 2 

−5 −4 −3 −2 −1 0 1 2 3 4 5

We apply this graphical representation to the first two PCs of the PCA:

> showBauges <- rupica$other$showBauges
> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[,1], add.p=TRUE, cleg=0.5)
> title("PCA - first PC",col.main="yellow" ,line=-2, cex.main=2)
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> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[,2], add.p=TRUE, csize=0.7)
> title("PCA - second PC",col.main="yellow" ,line=-2, cex.main=2)
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As we can see, none of these PCs seems to display a particular spatial pattern.
This visual assessment can be complemented by a test of spatial autocorrelation
in these PCs. This can be achieved using Moran’s I test. We use spdep’s
function moran.mc to perform these two tests. We first need to define the
spatial connectivity between the sampled individuals. For these data, spatial
connectivity is best defined as the overlap between home ranges of individuals,
modelled as disks with a radius of 1150m. chooseCN is used to create the
corresponding connection network:

> rupica.graph <- chooseCN(rupica$other$xy,type=5,d1=0,d2=2300, plot=FALSE, res="listw")

The connection network should ressemble this:

> rupica.graph

Characteristics of weights list object:
Neighbour list object:
Number of regions: 335
Number of nonzero links: 18018
Percentage nonzero weights: 16.05525
Average number of links: 53.78507

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 335 112225 335 15.04311 1352.07

> plot(rupica.graph, rupica$other$xy)
> title("rupica.graph")
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We perform Moran’s test for the first two PCs, and plot the results.

> pc1.mctest <- moran.mc(rupica.pca1$li[,1], rupica.graph, 999)
> plot(pc1.mctest)
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This result is surprisingly significant. Why is this? Moran’s plot (moran.plot)
represents the tested variable against its lagged vector; we apply it to the first
PC:

> moran.plot(rupica.pca1$li[,1], rupica.graph)
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Positive autocorrelation corresponds to a positive correlation between a variable
and its lag vector. Here, we can see that this relation is entirely driven by the
previously identified outliers, which turn out to be neighbours. This is therefore
a fairly trivial and uninteresting pattern. Results obtained on the second PC
are less surprisingly non-significant:

> pc2.mctest <- moran.mc(rupica.pca1$li[,2], rupica.graph, 999)
> plot(pc2.mctest)
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2.4 Multivariate tests of spatial structure

So far, we have only tested the existence of spatial structures in the first two
principal components of a PCA of the data. Therefore, these tests only describe
one fragment of the data, and do not encompass the whole diversity in the
data. As a complement, we can use Mantel test (mantel.randtest) to test
spatial structures in the whole data, by assessing the correlation between genetic
distances and geographic distances. Pairwise Euclidean distances are computed
using dist. Perform Mantel test, using the scaled genetic data you used before
in PCA, and the geographic coordinates.

> mtest <- mantel.randtest(dist(rupica.X), dist(rupica$other$xy))
> plot(mtest, nclass=30)
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Interestingly, this test turns out to be marginally significant, and would
encourage us to look for spatial patterns. This is the role of the spatial Principal
Component Analysis.

2.5 Spatial Principal Component Analysis

We apply an sPCA to the rupica dataset, using the connection network used
previously in Moran’s I tests:

> rupica.spca1 <- spca(rupica, cn=rupica.graph,scannf=FALSE, nfposi=2,nfnega=0)
> barplot(rupica.spca1$eig, col=rep(c("red","grey"), c(2,1000)), main="rupica dataset - sPCA eigenvalues")
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The principal components associated with the first two positive eigenvalues (in
red) shall be retained. The printing of spca objects is more explicit than dudi

objects, but named with the same conventions:

> rupica.spca1

########################################
# spatial Principal Component Analysis #
########################################

class: spca
$call: spca(obj = rupica, cn = rupica.graph, scannf = FALSE, nfposi = 2,

nfnega = 0)

$nfposi: 2 axis-components saved
$nfnega: 0 axis-components saved
Positive eigenvalues: 0.03018 0.01408 0.009211 0.006835 0.004529 ...
Negative eigenvalues: -0.008611 -0.006414 -0.004451 -0.003963 -0.003329 ...

vector length mode content
1 $eig 45 numeric eigenvalues

data.frame nrow ncol content
1 $c1 55 2 principal axes: scaled vectors of alleles loadings
2 $li 335 2 principal components: coordinates of entities ('scores')
3 $ls 335 2 lag vector of principal components
4 $as 2 2 pca axes onto spca axes

$xy: matrix of spatial coordinates
$lw: a list of spatial weights (class 'listw')

other elements: NULL

37



Unlike usual multivariate analyses, eigenvalues of sPCA are composite: they
measure both the genetic diversity (variance) and the spatial structure (spatial
autocorrelation measured by Moran’s I). This decomposition can also be used
to choose which principal component to interprete. The function screeplot

allows to display this information graphically:

> screeplot(rupica.spca1)
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While λ1 indicates with no doubt a structure, the second eigenvalue, λ2 is less
clearly distinct from the successive values. Thus, we shall keep in mind this
uncertainty when interpreting the second principal component of the analysis.

We map the sPCA results using s.value and lagged scores ($ls) instead of
the PC ($li), which are a ’denoisified’ version of the PCs.

> showBauges()
> s.value(rupica$other$xy, rupica.spca1$ls[,1], add.p=TRUE, csize=0.7)
> title("sPCA - first PC",col.main="yellow" ,line=-2, cex.main=2)
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This first PC shows a remarkably clear structure opposing two high-altitude
areas separated by a valley, which is thought to be an obstacle to the dispersal
of Chamois (due to higher exposition to predation in low-altitude areas).

The second PC of sPCA shows an equally interesting structure:

> showBauges()
> s.value(rupica$other$xy, rupica.spca1$ls[,2], add.p=TRUE, csize=0.7)
> title("sPCA - second PC",col.main="yellow" ,line=-2, cex.main=2)
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The smaller clusters appearing on this map correspond to social units identified
by direct observation in the field. Therefore, this genetic structure is merely a
reflect of the social behaviour of these individuals.

Both genetic structures can be represented altogether using colorplot.
The final figure should ressemble this (although colors may change from one
computer to another):

> showBauges()
> colorplot(rupica$other$xy, rupica.spca1$ls, axes=1:2, transp=TRUE, add=TRUE, cex=3)
> title("sPCA - colorplot of PC 1 and 2\n(lagged scores)", col.main="yellow", line=-2, cex=2)
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