Clustering algorithms 000000 000000000 MA of with groups 000 00000 0000 00000

Multivariate analysis of genetic data: exploring groups diversity

T. Jombart

Imperial College London

Bogota 01-12-2010

Clustering algorithms 000000 000000000 MA of with groups 000 00000 0000 00000

Outline

Introduction

Clustering algorithms

Hierarchical clustering K-means

Multivariate Analysis with group informations

Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Components

MA of with groups 000 00000 0000 00000

Outline

Introduction

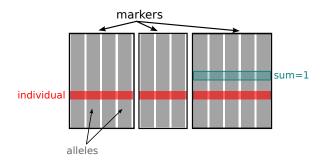
Clustering algorithms

Hierarchical clustering K-means

Multivariate Analysis with group informations

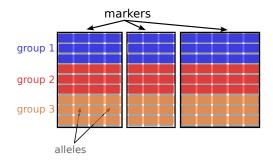
Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Components

Genetic data: recall



- How to define groups?
- How to handle group information?

Genetic data: recall



- How to define groups?
- How to handle group information?

Finding and using group information

Finding groups:

- hierarchical clustering:
 - single linkage
 - complete linkage
 - UPGMA
- K-means

Using group information:

- multivariate analysis of group frequencies
- using groups as partitions
- discriminant analysis

Finding and using group information

Finding groups:

- hierarchical clustering:
 - single linkage
 - complete linkage
 - UPGMA
- K-means

Using group information:

- multivariate analysis of group frequencies
- using groups as partitions
- discriminant analysis

Clustering algorithms

MA of with groups 000 00000 0000 00000

Outline

Introduction

Clustering algorithms Hierarchical clustering

K-means

Multivariate Analysis with group informations Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Componen

MA of with groups 000 00000 0000 00000

Outline

Introduction

Clustering algorithms Hierarchical clustering

K-means

Multivariate Analysis with group informations

Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Components

Clustering algorithms

MA of with groups 000 000000 0000 00000

A variety of algorithms

- single linkage
- complete linkage
- UPGMA
- Ward
- ...

MA of with groups 000 00000 0000 00000

Rationale

1. compute pairwise genetic distances D (or similarities)

- 2. group the closest pair(s) together
- 3. (optional) update D
- 4. return to 2) until no new group can be made

Clustering algorithms

MA of with groups 000 000000 0000 00000

- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update D
- 4. return to 2) until no new group can be made

Clustering algorithms

MA of with groups 000 00000 0000 00000

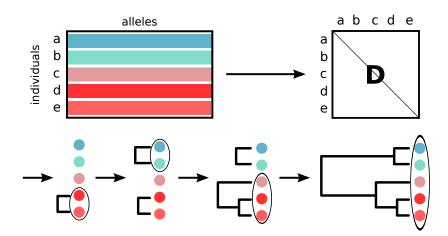
- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update \mathbf{D}
- 4. return to 2) until no new group can be made

Clustering algorithms

MA of with groups 000 000000 0000 00000

- 1. compute pairwise genetic distances D (or similarities)
- 2. group the closest pair(s) together
- 3. (optional) update \mathbf{D}
- 4. return to 2) until no new group can be made

MA of with groups 000 00000 0000 00000



Clustering algorithms

MA of with groups 000 00000 0000 0000

Differences between algorithms

k $D_{k,g} = \dots$ $i \xrightarrow{D_{i,j}} j$

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$

• UPGMA:
$$D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$$

Clustering algorithms

MA of with groups 000 00000 0000 0000

Differences between algorithms

k $D_{k,g} = \dots$ $i \bigoplus_{D_{i,j}} j$

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$

• UPGMA:
$$D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$$

Clustering algorithms

MA of with groups 000 00000 0000 0000

Differences between algorithms

k $D_{k,g}=...$ $i \rightarrow j$ $D_{i,j}$

- single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$
- complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$

• UPGMA:
$$D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$$

Clustering algorithms

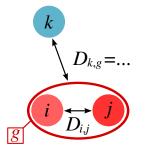
MA of with groups 000 00000 0000 0000

Differences between algorithms

• single linkage: $D_{k,g} = \min(D_{k,i}, D_{k,j})$

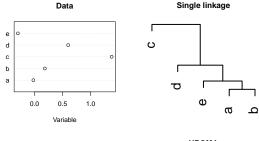
• complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$

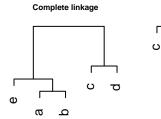
• UPGMA:
$$D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$$

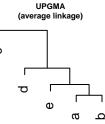


Clustering algorithms

Differences between algorithms







Clustering algorithms

MA of with groups 000 000000 0000 00000

Outline

Introduction

Clustering algorithms

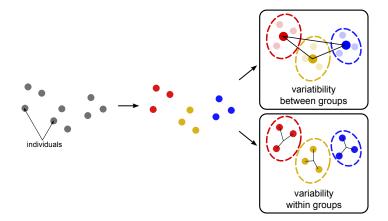
Hierarchical clustering K-means

Multivariate Analysis with group informations Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Component

Clustering algorithms

MA of with groups 000 000000 0000 00000

Variability between and within groups



K-means: underlying model

Univariate ANOVA model (ss: sum of squares):

 $\mathsf{sst}(x) = \mathsf{ssb}(x) + \mathsf{ssw}(x)$

- $k = 1, \ldots, K$: number of groups
- μ_k : mean of group k; μ : mean of all data
- g_k : set of individuals in group k $(i \in g_k \Leftrightarrow i$ is in group k)
- sst $(\mathbf{x}) = \sum_{i} (x_i \mu)^2$: total variation
- ssb $(\mathbf{x}) = \sum_k \sum_{i \in g_k} (\mu_k \mu)^2$: variation between groups
- ssw(x) = $\sum_k \sum_{i \in g_k} (x_i \mu_k)^2$: (residual) variation within groups

K-means: underlying model

Univariate ANOVA model (ss: sum of squares):

 $\mathsf{sst}(x) = \mathsf{ssb}(x) + \mathsf{ssw}(x)$

- $k = 1, \ldots, K$: number of groups
- μ_k : mean of group k; μ : mean of all data
- g_k : set of individuals in group k $(i \in g_k \Leftrightarrow i$ is in group k)
- sst $(\mathbf{x}) = \sum_{i} (x_i \mu)^2$: total variation
- ssb $(\mathbf{x}) = \sum_k \sum_{i \in g_k} (\mu_k \mu)^2$: variation between groups
- ssw(x) = $\sum_k \sum_{i \in g_k} (x_i \mu_k)^2$: (residual) variation within groups

K-means: underlying model

Univariate ANOVA model (ss: sum of squares):

 $\mathsf{sst}(x) = \mathsf{ssb}(x) + \mathsf{ssw}(x)$

- $k = 1, \ldots, K$: number of groups
- μ_k : mean of group k; μ : mean of all data
- g_k : set of individuals in group k $(i \in g_k \Leftrightarrow i \text{ is in group } k)$
- sst $(\mathbf{x}) = \sum_{i} (x_i \mu)^2$: total variation
- ssb $(\mathbf{x}) = \sum_k \sum_{i \in g_k} (\mu_k \mu)^2$: variation between groups
- ssw(x) = $\sum_k \sum_{i \in g_k} (x_i \mu_k)^2$: (residual) variation within groups

K-means: underlying model

Univariate ANOVA model (ss: sum of squares):

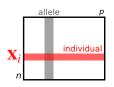
 $\mathsf{sst}(x) = \mathsf{ssb}(x) + \mathsf{ssw}(x)$

- $k = 1, \ldots, K$: number of groups
- μ_k : mean of group k; μ : mean of all data
- g_k : set of individuals in group k $(i \in g_k \Leftrightarrow i$ is in group k)
- sst $(\mathbf{x}) = \sum_{i} (x_i \mu)^2$: total variation
- ssb $(\mathbf{x}) = \sum_k \sum_{i \in g_k} (\mu_k \mu)^2$: variation between groups
- ssw(x) = $\sum_k \sum_{i \in g_k} (x_i \mu_k)^2$: (residual) variation within groups

K-means: underlying model

Extension to multivariate data ($\mathbf{X} \in \mathbb{R}^{n \times p}$):

$$SST(\mathbf{X}) = SSB(\mathbf{X}) + SSW(\mathbf{X})$$

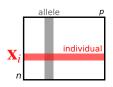


- μ_k: vector of means of group k; μ: vector of means of all data
- SST $(\mathbf{X}) = \sum_{i} \|\mathbf{x}_{i} \boldsymbol{\mu}\|^{2}$: total variation
- SSB(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \| \boldsymbol{\mu}_k \boldsymbol{\mu} \|^2$: variation between groups
- SSW(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \|\mathbf{x}_i \boldsymbol{\mu}_k\|^2$: (residual) variation within groups

K-means: underlying model

Extension to multivariate data ($\mathbf{X} \in \mathbb{R}^{n \times p}$):

$$SST(\mathbf{X}) = SSB(\mathbf{X}) + SSW(\mathbf{X})$$

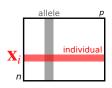


- μ_k: vector of means of group k; μ: vector of means of all data
- SST $(\mathbf{X}) = \sum_{i} \|\mathbf{x}_{i} \boldsymbol{\mu}\|^{2}$: total variation
- SSB(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \|\boldsymbol{\mu}_k \boldsymbol{\mu}\|^2$: variation between groups
- SSW(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \|\mathbf{x}_i \boldsymbol{\mu}_k\|^2$: (residual) variation within groups

K-means: underlying model

Extension to multivariate data ($\mathbf{X} \in \mathbb{R}^{n \times p}$):

$$\mathsf{SST}(\mathbf{X}) = \mathsf{SSB}(\mathbf{X}) + \mathsf{SSW}(\mathbf{X})$$



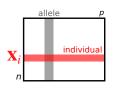
- μ_k: vector of means of group k; μ: vector of means of all data
- SST $(\mathbf{X}) = \sum_{i} \|\mathbf{x}_{i} \boldsymbol{\mu}\|^{2}$: total variation
- SSB(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \| \boldsymbol{\mu}_k \boldsymbol{\mu} \|^2$: variation between groups
- SSW(X) = $\sum_k \sum_{i \in g_k} \|\mathbf{x}_i \boldsymbol{\mu}_k\|^2$: (residual) variation within groups

MA of with groups 000 000000 0000 00000

K-means: underlying model

Extension to multivariate data ($\mathbf{X} \in \mathbb{R}^{n \times p}$):

$$SST(\mathbf{X}) = SSB(\mathbf{X}) + SSW(\mathbf{X})$$



- μ_k: vector of means of group k; μ: vector of means of all data
- SST $(\mathbf{X}) = \sum_{i} \|\mathbf{x}_{i} \boldsymbol{\mu}\|^{2}$: total variation
- SSB(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \| \boldsymbol{\mu}_k \boldsymbol{\mu} \|^2$: variation between groups
- SSW(\mathbf{X}) = $\sum_k \sum_{i \in g_k} \|\mathbf{x}_i \boldsymbol{\mu}_k\|^2$: (residual) variation within groups

MA of with groups 000 000000 0000 00000

K-means rationale

Find K groups $\mathcal{G} = \{g_1, \ldots, g_k\}$ minimizing the sum of squares within-groups (SSW):

$$\arg\min_{\mathcal{G}=\{g_1,\ldots,g_k\}}\sum_k\sum_{i\in g_k}\|\mathbf{x}_i-\boldsymbol{\mu}_k\|^2$$

Note: this equates to finding groups maximizing the between-groups sum of squares.

MA of with groups 000 000000 0000 00000

K-means rationale

Find K groups $\mathcal{G} = \{g_1, \ldots, g_k\}$ minimizing the sum of squares within-groups (SSW):

$$\arg\min_{\mathcal{G}=\{g_1,\ldots,g_k\}}\sum_k\sum_{i\in g_k}\|\mathbf{x}_i-\boldsymbol{\mu}_k\|^2$$

Note: this equates to finding groups maximizing the between-groups sum of squares.

Clustering algorithms

MA of with groups 000 000000 0000 00000

K-means algorithm

- 1. select random group means (μ_k , $k = 1, \ldots, K$)
- 2. affect each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

Clustering algorithms

MA of with groups 000 000000 0000 00000

K-means algorithm

- 1. select random group means (μ_k , $k = 1, \ldots, K$)
- 2. affect each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

Clustering algorithms

MA of with groups 000 000000 0000 00000

K-means algorithm

- 1. select random group means (μ_k , $k = 1, \ldots, K$)
- 2. affect each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

Clustering algorithms

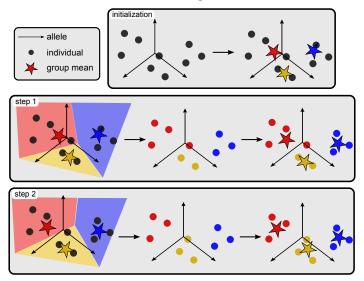
MA of with groups 000 000000 0000 00000

K-means algorithm

- 1. select random group means (μ_k , $k = 1, \dots, K$)
- 2. affect each individual \mathbf{x}_i to the closest group $\longrightarrow g_k$
- 3. update group means μ_k
- 4. go back to 2) until convergence (groups no longer change)

MA of with groups 000 00000 0000 0000

K-means algorithm



Clustering algorithms

MA of with groups 000 000000 0000 00000

Which K?

• K-means does not identify the number of clusters (K)

- each K-mean solution is a model with a likelihood
- model selection can be used to select K

Clustering algorithms

MA of with groups 000 00000 0000 00000

Which K?

- K-means does not identify the number of clusters (K)
- each K-mean solution is a model with a likelihood
- model selection can be used to select K

Clustering algorithms

MA of with groups 000 000000 0000 00000

Which K?

- K-means does not identify the number of clusters (K)
- each K-mean solution is a model with a likelihood
- model selection can be used to select K

MA of with groups 000 00000 0000 0000

Using Bayesian Information Criterion (BIC)

Defined as:

$$\mathsf{BIC} = -2\mathsf{log}(\mathcal{L}) + k\mathsf{log}(n)$$

with:

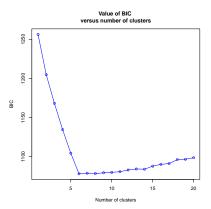
- \mathcal{L} : likelihood
- k: number of parameters
- n: number of observations (individuals)

Smallest BIC = best model

MA of with groups 000 000000 0000 00000

K-means and BIC: example

Simulated data: 6 populations in island model



(Jombart et al. 2010, BMC Genetics)

Clustering algorithms 000000 000000000 MA of with groups

Outline

Introduction

Clustering algorithms

Hierarchical clustering K-means

Multivariate Analysis with group informations

Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Components

Clustering algorithms 000000 000000000

Outline

Introduction

Clustering algorithms

Hierarchical clustering K-means

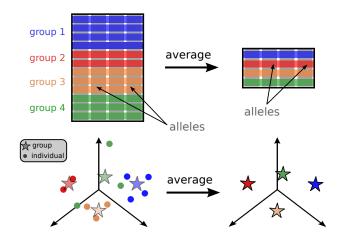
Multivariate Analysis with group informations

Analysis of population data

Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Components

Clustering algorithms 000000 000000000 MA of with groups

Aggregating data by groups



 \longrightarrow multivariate analysis of group allele frequencies.

Analysing group data

Available methods:

- Principal Component Analysis (PCA) of allele frequency table
- Genetic distance between populations → Principal Coordinates Analysis (PCoA)
- Correspondance Analysis (CA) of allele counts

Criticism:

- Loose individual information
- Neglect within-group diversity
- CA: possible artefactual outliers

Analysing group data

Available methods:

- Principal Component Analysis (PCA) of allele frequency table
- Genetic distance between populations → Principal Coordinates Analysis (PCoA)
- Correspondance Analysis (CA) of allele counts

Criticism:

- Loose individual information
- Neglect within-group diversity
- CA: possible artefactual outliers

Clustering algorithms 000000 000000000 MA of with groups

Outline

Introduction

Clustering algorithms

Hierarchical clustering K-means

Multivariate Analysis with group informations

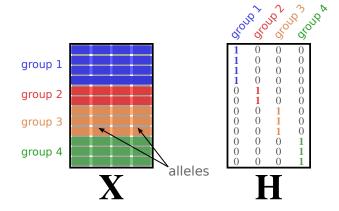
Analysis of population data

Between-group PCA

Discriminant Analysis Discriminant Analysis of Principal Components

Clustering algorithms 000000 000000000 MA of with groups

Using groups as partitions



Groups are coded as dummy vectors in H.

The multivariate ANOVA model

The data matrix \mathbf{X} can be decomposed as:

$$\mathbf{X} = \mathbf{P}\mathbf{X} + (\mathbf{I} - \mathbf{P})\mathbf{X}$$

where:

- P is the projector onto H: P = H(H^TDH)⁻¹)H^TD, D being a metric in Rⁿ
- \mathbf{PX} is a $n \times p$ matrix where each observation is replaced by the group average

The multivariate ANOVA model

Variation partition (same as K-means):

$$\mathsf{VAR}(\mathbf{X}) = \mathsf{B}(\mathbf{X}) + \mathsf{W}(\mathbf{X})$$

where:

- $VAR(\mathbf{X}) = trace(\mathbf{X}^T \mathbf{D} \mathbf{X})$
- $B(\mathbf{X}) = trace(\mathbf{X}^T \mathbf{P}^T \mathbf{D} \mathbf{P} \mathbf{X})$
- $W(\mathbf{X}) = trace(\mathbf{X}^T(\mathbf{I} \mathbf{P})^T \mathbf{D}(\mathbf{I} \mathbf{P})\mathbf{X})$

Clustering algorithms 000000 000000000 MA of with groups

Between-group analysis

 $\mathsf{VAR}(\mathbf{X}) = \mathsf{B}(\mathbf{X}) + \mathsf{W}(\mathbf{X})$

Classical PCA:

- decompose $\mathsf{VAR}(\mathbf{X})$
- find \mathbf{u} so that $\mathsf{var}(\mathbf{X}\mathbf{u})$ is maximum

Between-group PCA:

- decompose $\mathsf{B}(\mathbf{X})$
- find ${\bf u}$ so that $\mathsf{b}({\bf X}{\bf u})$ is maximum

Clustering algorithms 000000 000000000 MA of with groups

Between-group analysis

 $\mathsf{VAR}(\mathbf{X}) = \mathsf{B}(\mathbf{X}) + \mathsf{W}(\mathbf{X})$

Classical PCA:

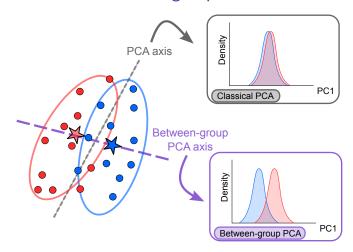
- decompose $\text{VAR}(\mathbf{X})$
- find ${\bf u}$ so that $\mathsf{var}({\bf X}{\bf u})$ is maximum

Between-group PCA:

- decompose $\mathsf{B}(\mathbf{X})$
- find ${\bf u}$ so that $\mathsf{b}({\bf X}{\bf u})$ is maximum

Clustering algorithms 000000 000000000

Between-group PCA



Between-group PCA looks at between-group variability.

Clustering algorithms 000000 000000000 MA of with groups

Outline

Introduction

Clustering algorithms

Hierarchical clustering K-means

Multivariate Analysis with group informations

Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Compone

PCA, between-group PCA, and Discriminant Analysis

$$\mathsf{VAR}(\mathbf{X}) = \mathsf{B}(\mathbf{X}) + \mathsf{W}(\mathbf{X})$$

Maximising different quantities:

- *PCA*: maximizes overall diversity (max var(**Xu**))
- *Between-group PCA*: maximizes group diversity (max b(**Xu**))
- Discriminant Analysis: maximizes group separation (max $b(\mathbf{Xu})$, min $w(\mathbf{Xu})$)

PCA, between-group PCA, and Discriminant Analysis

$$\mathsf{VAR}(\mathbf{X}) = \mathsf{B}(\mathbf{X}) + \mathsf{W}(\mathbf{X})$$

Maximising different quantities:

- PCA: maximizes overall diversity (max var(Xu))
- Between-group PCA: maximizes group diversity (max b(Xu))
- Discriminant Analysis: maximizes group separation (max $b(\mathbf{Xu}),$ min $w(\mathbf{Xu}))$

PCA, between-group PCA, and Discriminant Analysis

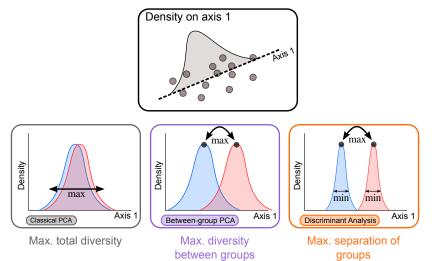
$$\mathsf{VAR}(\mathbf{X}) = \mathsf{B}(\mathbf{X}) + \mathsf{W}(\mathbf{X})$$

Maximising different quantities:

- PCA: maximizes overall diversity (max var(Xu))
- Between-group PCA: maximizes group diversity (max b(Xu))
- Discriminant Analysis: maximizes group separation (max $b({\bf Xu}),$ min $w({\bf Xu}))$

Clustering algorithms 000000 000000000 MA of with groups

Discriminant Analysis



MA of with groups ○○○ ○○○○○ ○○○○○ ○○○○○○

Technical issues

Discriminant Analysis requires:

- $\mathbf{X}^T \mathbf{D} \mathbf{X}$ to be invertible \Rightarrow less variables than observations
- $\mathbf{X}^T \mathbf{D} \mathbf{X}$ to be invertible \Rightarrow uncorrelated variables

Genetic data:

- (almost) always (many) more alleles than individuals
- allele frequencies are by definition correlated $(\sum = 1)$
- linkage disequilibrium \rightarrow correlated alleles

Technical issues

Discriminant Analysis requires:

- $\mathbf{X}^T \mathbf{D} \mathbf{X}$ to be invertible \Rightarrow less variables than observations
- $\mathbf{X}^T \mathbf{D} \mathbf{X}$ to be invertible \Rightarrow uncorrelated variables

Genetic data:

- (almost) always (many) more alleles than individuals
- allele frequencies are by definition correlated ($\sum = 1)$
- linkage disequilibrium \rightarrow correlated alleles

Clustering algorithms 000000 000000000 MA of with groups

Outline

Introduction

Clustering algorithms

Hierarchical clustering K-means

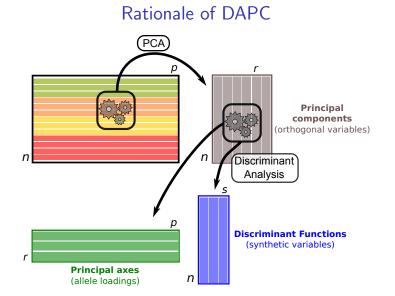
Multivariate Analysis with group informations

Analysis of population data Between-group PCA Discriminant Analysis Discriminant Analysis of Principal Components

Discriminant Analysis of Principal Components (DAPC)

- new method (Jombart et al. 2010, BMC Genetics)
- aim: modify DA for genetic data
- relies on data orthogonalisation/reduction using PCA

MA of with groups



MA of with groups

DAPC: summary

Discriminant Analysis requires:

- less variables than observations
- uncorrelated variables

Advantages of DAPC:

- always less PCs than observations
- PCs are uncorrelated
- still possible to compute allele contributions

MA of with groups

DAPC: summary

Discriminant Analysis requires:

- less variables than observations
- uncorrelated variables

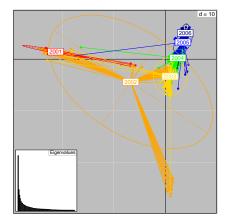
Advantages of DAPC:

- always less PCs than observations
- PCs are uncorrelated
- still possible to compute allele contributions

MA of with groups

DAPC: example

Seasonal influenza (A/H3N2) data, PCA:



MA of with groups

DAPC: example

Seasonal influenza (A/H3N2) data, DAPC:

