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Genetic data: recall

alleles 

individual

markers

sum=1

• How to define groups?

• How to handle group information?
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Finding and using group information

Finding groups:

• hierarchical clustering:
• single linkage
• complete linkage
• UPGMA

• K-means

Using group information:

• multivariate analysis of group frequencies

• using groups as partitions

• discriminant analysis
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A variety of algorithms

• single linkage

• complete linkage

• UPGMA

• Ward

• ...
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Rationale

1. compute pairwise genetic distances D (or similarities)

2. group the closest pair(s) together

3. (optional) update D

4. return to 2) until no new group can be made
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Differences between algorithms

k

i j
Di,jg

D   =...k,g

• single linkage: Dk ,g = min(Dk ,i ,Dk ,j )

• complete linkage: Dk ,g = max(Dk ,i ,Dk ,j )

• UPGMA: Dk ,g =
Dk,i+Dk,j

2
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Differences between algorithms
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Variability between and within groups

variatibility 
between groups

variability 
within groups

individuals
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K-means: underlying model

Univariate ANOVA model (ss: sum of squares):

sst(x ) = ssb(x ) + ssw(x )

with:

• k = 1, . . . ,K : number of groups

• µk : mean of group k ; µ: mean of all data

• gk : set of individuals in group k (i ∈ gk ⇔ i is in group k)

• sst(x) =
∑

i(xi − µ)2: total variation

• ssb(x) =
∑

k

∑
i∈gk (µk − µ)

2: variation between groups

• ssw(x) =
∑

k

∑
i∈gk (xi − µk )

2: (residual) variation within
groups
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K-means: underlying model

Extension to multivariate data (X ∈ Rn×p):

SST(X) = SSB(X) + SSW(X)

individual

allele

n

p

xi

with:

• µk : vector of means of group k ; µ: vector of means
of all data

• SST(X) =
∑

i ‖xi − µ‖2: total variation

• SSB(X) =
∑

k

∑
i∈gk ‖µk −µ‖2: variation between

groups

• SSW(X) =
∑

k

∑
i∈gk ‖xi − µk‖2: (residual)

variation within groups
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K-means rationale

Find K groups G = {g1, . . . , gk} minimizing the sum of squares
within-groups (SSW):

arg min
G={g1,...,gk}

∑
k

∑
i∈gk

‖xi − µk‖2

Note: this equates to finding groups maximizing the
between-groups sum of squares.
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K-means algorithm

The K-mean problem is solved by the following algorithm:

1. select random group means (µk , k = 1, . . . ,K )

2. affect each individual xi to the closest group −→ gk

3. update group means µk

4. go back to 2) until convergence (groups no longer change)
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K-means algorithm

individual

allele

group mean

initialization

step 1

step 2
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Which K?

• K-means does not identify the number of clusters (K )

• each K-mean solution is a model with a likelihood

• model selection can be used to select K
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Using Bayesian Information Criterion (BIC)

Defined as:
BIC = −2log(L) + k log(n)

with:

• L: likelihood

• k : number of parameters

• n: number of observations (individuals)

Smallest BIC = best model
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K-means and BIC: example
Simulated data: 6 populations in island model
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(Jombart et al. 2010, BMC Genetics)
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Aggregating data by groups

alleles 

group 1

group 2

group 4

group 3

average

average

alleles 

group

individual

−→ multivariate analysis of group allele frequencies.
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Analysing group data

Available methods:

• Principal Component Analysis (PCA) of allele frequency table

• Genetic distance between populations −→ Principal
Coordinates Analysis (PCoA)

• Correspondance Analysis (CA) of allele counts

Criticism:

• Loose individual information

• Neglect within-group diversity

• CA: possible artefactual outliers

26/42



Introduction Clustering algorithms MA of with groups

Analysing group data

Available methods:

• Principal Component Analysis (PCA) of allele frequency table

• Genetic distance between populations −→ Principal
Coordinates Analysis (PCoA)

• Correspondance Analysis (CA) of allele counts

Criticism:

• Loose individual information

• Neglect within-group diversity

• CA: possible artefactual outliers

26/42



Introduction Clustering algorithms MA of with groups

Outline

Introduction

Clustering algorithms
Hierarchical clustering
K-means

Multivariate Analysis with group informations
Analysis of population data
Between-group PCA
Discriminant Analysis
Discriminant Analysis of Principal Components

27/42



Introduction Clustering algorithms MA of with groups

Using groups as partitions

alleles 
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The multivariate ANOVA model

The data matrix X can be decomposed as:

X = PX+ (I−P)X

where:

• P is the projector onto H: P = H(HTDH)−1)HTD, D
being a metric in Rn

• PX is a n × p matrix where each observation is replaced by
the group average
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The multivariate ANOVA model

Variation partition (same as K-means):

VAR(X) = B(X) + W(X)

where:

• VAR(X) = trace(XTDX)

• B(X) = trace(XTPTDPX)

• W(X) = trace(XT (I−P)TD(I−P)X)
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Between-group analysis

VAR(X) = B(X) + W(X)

Classical PCA:

• decompose VAR(X)

• find u so that var(Xu) is maximum

Between-group PCA:

• decompose B(X)

• find u so that b(Xu) is maximum
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Between-group PCA

PCA axis

Between-group
PCA axis

PC1

D
en
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ty

Classical PCA

PC1
D
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Between-group PCA

Between-group PCA looks at between-group variability.
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PCA, between-group PCA, and Discriminant Analysis

VAR(X) = B(X) + W(X)

Maximising different quantities:

• PCA: maximizes overall diversity (max var(Xu))

• Between-group PCA: maximizes group diversity (max b(Xu))

• Discriminant Analysis: maximizes group separation (max
b(Xu), min w(Xu))
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Discriminant Analysis
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Technical issues

Discriminant Analysis requires:

• XTDX to be invertible ⇒ less variables than observations

• XTDX to be invertible ⇒ uncorrelated variables

Genetic data:

• (almost) always (many) more alleles than individuals

• allele frequencies are by definition correlated (
∑

= 1)

• linkage disequilibrium → correlated alleles
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Discriminant Analysis of Principal Components (DAPC)

• new method (Jombart et al. 2010, BMC Genetics)

• aim: modify DA for genetic data

• relies on data orthogonalisation/reduction using PCA
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Rationale of DAPC

n
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r

Principal 
components

(orthogonal variables)

PCA

Discriminant 
Analysis
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Principal axes
(allele loadings) n

s

Discriminant Functions
(synthetic variables)
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DAPC: summary

Discriminant Analysis requires:

• less variables than observations

• uncorrelated variables

Advantages of DAPC:

• always less PCs than observations

• PCs are uncorrelated

• still possible to compute allele contributions
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DAPC: example

Seasonal influenza (A/H3N2) data, PCA:

 d = 10 
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Introduction Clustering algorithms MA of with groups

DAPC: example

Seasonal influenza (A/H3N2) data, DAPC:

 d = 5 
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