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Island model

Reproduction within populations 4+ migration.
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Hierarchical island model

Reproduction within subpopulations + stratified migration.
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Populations A Populations B
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Isolation by distance (IBD)

Reproduction between neighbours — 'diffusion’ of genes
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Population A
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Inbreeding avoidance

Mating with individuals from another population — 'repulsion’
structure

Interagtions
(mating)
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Genetic models and spatial structures

e island / hierarchical island model. patches of related
genotypes

e jsolation by distance (IBD): clines of genetic differentiation

e inbreeding avoidance: repulsion structure

=- Genetic processes often create spatial structures.
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Using spatial information in genetic data analysis

test the existence of spatial patterns

detect the of spatial structures
o spatial genetic structures

e infer of the patterns (migrations)
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Using spatial information in genetic data analysis

test the existence of spatial patterns

detect the scales of spatial structures

describe spatial genetic structures

e infer directionality of the patterns (migrations)
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Spatial autocorrelation

Definitions:

e in general: values of a variable non independent from the
corresponding spatial locations

e in genetics: genetic distance is correlated to spatial distance

positive: closer individuals are more similar than at random

negative: closer individuals are more dissimilar than at random
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Spatial autocorrelation

Definitions:

e in general. values of a variable non independent from the
corresponding spatial locations

e in genetics: genetic distance is correlated to spatial distance

Two types of spatial autocorrelation:

e positive: closer individuals are more similar than at random

e negative: closer individuals are more dissimilar than at random
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Spatial autocorrelation: illustration
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) | (No autocorrelation (random)) |
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Spatial weights and the lag vector

Matrix of spatial weights L

Row 4 : uniform weights for neighbours of i.

0.000 0.500 0.000 0.000 0.500
0.333 0.000 0.000 0.333 0.333
0.000 0.000 0.000 1.000 0.000
0.000 0.333 0.333 0.000 0.333
0.333 0.333 0.000 0.333 0.000

o Qo0 oo

Let x be a variable with one value at each location.

The lag vector Lx computes mean values of neighbours.

14/49



Introduction Testing spatial structures Multivariate analysis and spatial patterns Inferring directionality

000000 000@000000 0000000000 00000
0000000
00000

Spatial weights and the lag vector

Matrix of spatial weights L

Row i : uniform weights for neighbours of .

a b c d e
0.000 0.500 0.000 0.000 0.500
0.333 0.000 0.000 0.333 0.333
0.000 0.000 0.000 1.000 0.000
0.000 0.333 0.333 0.000 0.333
0.333 0.333 0.000 0.333 0.000

o Qon oo

Let x be a variable with one value at each location.

The Lx computes

14/49



Introduction Testing spatial structures Multivariate analysis and spatial patterns Inferring directionality

000000 000@000000 0000000000 00000
0000000
00000

Spatial weights and the lag vector

Matrix of spatial weights L

Row i : uniform weights for neighbours of .

a b c d e
0.000 0.500 0.000 0.000 0.500
0.333 0.000 0.000 0.333 0.333
0.000 0.000 0.000 1.000 0.000
0.000 0.333 0.333 0.000 0.333
0.333 0.333 0.000 0.333 0.000

o Qon oo

Let x be a variable with one value at each location.

The lag vector Lx computes mean values of neighbours.

14/49



Introduction Testing spatial structures analysis and spatial patterns Inferring directionality

0000@00000

A variable and its lag-vector

Lag vector :

Random:
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Residuals
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A variable and its lag-vector

Lag vector :
Positive
autocorrelation:
3
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A variable and its lag-vector

Lag vector :

Negative
autocorrelation:
3
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Df  Sum Sq Mean Sq F value Pr(>F)
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Moran's index: definition
1
Moran's I: T
x'Lx 1
I(x) = ————
n  var(x)

where:

e x € R" : a centred variable (e.g. allele frequency, PC)
e L : matrix of spatial weights (nxn)

e Lx : lag vector

o Jy= nfl ~ 0 : null value (no autocorrelation, i.e. random
spatial distribution)
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Moran's index: definition
Moran's I: .
x'Lx 1
I(x) = ————
n  var(x)

where:

e x € R" : a centred variable (e.g. allele frequency, PC)
e L : matrix of spatial weights (nxn)

e Lx : lag vector

o Jy= nfl ~ 0 : null value (no autocorrelation, i.e. random
spatial distribution)

= Moran'’s [ varies like (x, Lx).
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Variable, lag-vector, Moran's [

Lag vector :

Random:
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Variable, lag-vector, Moran's [
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Variable, lag-vector, Moran's [

Lag vector :
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Testing Moran's [

Monte Carlo procedure:

compute [ from the data

e permute randomly the locations to get a value of I under Hy:
“x is distributed at random across space.”

repeat this operation a large number of times to obtain a
reference distribution of I under Hj

e compare initial value to the reference distribution to get a
p-value.
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Application: testing spatial structures in principal
components

Data (2 population, island model):
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Application: testing spatial structures in principal

PCA results, PC 1:
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Mantel’s correlation
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Univariate /vs/ multivariate correlation

e Moran's I is univariate

e solution: test a few principal components
e problems:

e does not use all the genetic information
e which PC to test?

e correction for multiple testing

= need for multivariate tests
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Mantel's correlation: rationale

Correlation between two unfolded distance matrices.

n(n-1)/2
—1 T 1 T ]
n
n
[ ] ..
o % ° A , n(n-1)/2
raphic
° N — os —1 T 1
e ©
tee ),
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Mantel's correlation: definition

Notations:

X = [z5] (X € R™™™): genetic distances
Y = [y;;] (Y € R"*™): geographic distances

e I, y: means of z and y (excepting diagonals)

sz, Syt standard deviation of z and y (excepting diagonals)

Original definition (unstandardized):

n—1 n
M= Z Z Tij Yij

i=1 j=i+1
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Mantel's correlation: definition

Notations:

X = [z;] (X € R®™*™): genetic distances
Y = [y;;] (Y € R"*™): geographic distances

e I, y: means of z and y (excepting diagonals)

sz, Syt standard deviation of z and y (excepting diagonals)

Standardized coefficient (true correlation):

Z Z SCU—ZE yzy @)

i=1 j=1i+1
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Testing Mantel correlation

Monte Carlo procedure:

e compute 2z or r\q from the data

e permute randomly the rows and columns of one matrix,
recompute the test statistic (i.e., under Hy: "no correlation”)

e repeat this operation many times to generate a reference
distribution

e compare initial value to the reference distribution to get a
p-value.
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Application: testing

Data (2 population, island model):
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Multivariate analysis and spatial patterns
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Mantel test:
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Testing spatial structures

Correlogram
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Spatial dependence at different scales

Positive autocorrelation can indicate different patterns

( )

( J
Sas s ghes

(Autocorrelation - Large scale)
. J

1Autocorrelation - Medium scaIeL L (Autocorrelation - fine scale )

= How to detect the of spatial structures?
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Spatial dependence at different scales

Positive autocorrelation can indicate different patterns
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= How to detect the scale of spatial structures?
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Correlogram: rationale

Compute spatial autocorrelation (Moran's I, Mantel's 7)) for
different distance classes.

Approach:

e define several classes of geographic distances
e for each class, define connectivity between locations
e set spatial weights of non-connected locations to zero

e compute spatial autocorrelation for each class
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Correlogram: rationale
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Application: describing spatial structures

Data (2 population, island model): Mantel correlogram:
ER . Aph A A 4 A | A PopA
° A A | PopB 9
A A A 3
8 7 [ © A A AL 2
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L] A c
> .. ° A Ay A g
~ A 4 A ¢
e “AA a A A s s
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. ’ AA 4 &AA g°
° A
S A “2“’ At a Al 4
0
ko, a ™ 5
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X Distance class index
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Multivariate analysis and spatial patterns
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Mapping principal components

Maps of the three first principal components of PCA.

Is this appropriate?
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Rationale of multivariate analyses (recall)

Finding the directions summarizing best the genetic diversity.

o Biological entities
—_—> Alleles
—— Principal axis

Alleles
abcde

Biological entity

Loadings

(Ua, Uy, Uc, Ug, Ue) (Principal axis)

Uz@+ub + ucC _ Synthetic variable

- Principal component
+ud+ue ( p p )
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Rationale of multivariate analyses (recall)

Finding the directions summarizing best the genetic diversity.

Alleles
abcde

Biological entity

Loadings

(Ua, Uy, Uc, Ug, Ue) (Principal axis)

o Biological entities Ua@ + ubb+ ucC —
—_—> Alleles
—— Principal axis

Synthetic variable
Principal component
+ud+ue ( p p )

Spatial information is not taken into account.
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Using spatial information

e usual multivariate analyses ignore spatial information

e they may reveal obvious spatial structures, but overlook finer
patterns

= need for taking spatial information into account
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Spatial Principal Component Analysis (sPCA): rationale

Principal components Xu should:

e display variability = max var(Xu)
display = max [(Xu)
(or) display = min I(Xu)
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e display positive autocorrelation = max I(Xu)
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Spatial Principal Component Analysis (sPCA): rationale

Principal components Xu should:

e display variability = max var(Xu)
e display positive autocorrelation = max I(Xu)

e (or) display negative autocorrelation = min I(Xu)

37/49
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Formalization of the problem
Notations:
e X: matrix of centered (possibly scaled) allele frequencies
(X e R"*P)
e L: matrix of spatial weights (L € R"*™)
e u: principal axis made of p loadings (u € R?, |lul|? = 1)
e Xu: principal component
g: R™PxR™™ xR — R
(X,L,u) —  ¢(X,L,u) = var(Xu)/(Xu)

[uf* =1
successive axes must be orthogonal
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Formalization of the problem
Notations:

e X: matrix of centered (possibly scaled) allele frequencies
(X e R"*P)

e L: matrix of spatial weights (L. € R"*")
e u: principal axis made of p loadings (u € R?, [jul|?> = 1)

e Xu: principal component
The criterion of the sPCA is:

g: R"™PxR"*"™xRP — R
(X,L,u) —  ¢(X,L,u) = var(Xu)I(Xu)

Additional constraints:
2 _
o [ul* =1
® successive axes must be orthogonal
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Solution

e It can be shown that:
1
9(X,L,u) = 2—uTXT(L +LT)Xu
n

where XT(L + LT)X is symmetric.

e The extremums of ¢(X, L, u) are then given by the eigenanalysis of:
1
—XT"(L+LHX
2n (L+ )

e \We obtain a set of orthonormal eigenvectors {uy,--- ,u,}
associated to r non-null eigenvalues {A1,- -+, A} (with A; > Aj4q,
i=1,..,r—1) verifying:

Ar =var(Xu, ) I (Xu,) < g(X,L,u;) <var(Xup)I(Xuy) = A
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e |t can be shown that:
1
9(X,L,u) = 2—uTXT(L +LT)Xu
n

where XT(L + LT)X is symmetric.

e The extremums of g(X, L, u) are then given by the eigenanalysis of:

1

—X"(L+L")X

an X ( )
We obtain a set of orthonormal eigenvectors {uy,--- ,u,}
associated to r non-null eigenvalues {A1, -+, A} (with A; > Aj4q,

i=1,...,7 — 1) verifying:

Ar = var(Xu, ) I (Xu,) < g(X,L,u;) <var(Xuy)l(Xuy) = N\
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Solution

e |t can be shown that:

1
9(X,L,u) = 2—uTXT(L +L7)Xu
n

where X7(L + LT)X is symmetric.

e The extremums of g(X, L, u) are then given by the eigenanalysis of:

1
—X"(L+L")X
an X ( )
e \We obtain a set of orthonormal eigenvectors {uy, - ,u,}
associated to r non-null eigenvalues {1, -+, A} (with A; > Ay,

i=1,..,r—1) verifying:

Ar =var(Xu, ) I (Xu,) < ¢g(X,L,u;) <var(Xup)I(Xuy) = A
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Spatial Principal Component Analysis (sPCA): outputs

Principal
components
diversity
+
spatial structures

biological
n entity

=

Principal axes
(allele loadings)

Spatial structures
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Spatial Principal Component Analysis (sPCA): example

Chamois (Rupicapra rupicapra) in the Bauges mountains.

What is the genetic structure of this population (reproduction
units)?
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Chamois (Rupicapra rupicapra) in the Bauges mountains.

What is the genetic structure of this population (reproduction
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Spatial Principal Component Analysis (sPCA): example

PCA results: no spatial structure, 4 outliers
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Spatial Principal Component Analysis (sPCA): example

sPCA results: several spatial structures (confirmed by field
observations).
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Multivariate method do not infer directionality

Principal Components have no direction.

(Cavalli-Sforza et al. 1993, Science)
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Multivariate method do not infer directionality

Principal Components have no direction.

(Cavalli-Sforza et al. 1993, Science)
How to infer migrations?
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The 'bottleneck’ effect

migration

®

New populatlon

[ Original population ] population growth
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Effects of successive bottlenecks

Progressive loss of genetic diversity within populations.

bottleneck
-~ ~

Diversity

5
Distance from origin i
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Expected patterns of migrations

Diversity within population decreases with distance from the origin
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Patterns of migrations: example

Reconstructing the spread of Malaria worlwide.

R?=0.945
p<0.001

ogigoograpni detance)

(Tanabe et al. 2010, Current Biology)

Plasmodium falciparum accompanied Human migrations.
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