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Island model

Reproduction within populations + migration.

Population A Population B

migration

migration
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Hierarchical island model

Reproduction within subpopulations + stratified migration.

Populations A Populations B

migration
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Isolation by distance (IBD)

Reproduction between neighbours → ’diffusion’ of genes

Population A Population B

Gene flow
(diffusion)
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Inbreeding avoidance

Mating with individuals from another population → ’repulsion’
structure

Interactions
(mating)
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Genetic models and spatial structures

• island / hierarchical island model: patches of related
genotypes

• isolation by distance (IBD): clines of genetic differentiation

• inbreeding avoidance: repulsion structure

⇒ Genetic processes often create spatial structures.
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Using spatial information in genetic data analysis

• test the existence of spatial patterns

• detect the scales of spatial structures

• describe spatial genetic structures

• infer directionality of the patterns (migrations)
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Spatial autocorrelation

Definitions:

• in general: values of a variable non independent from the
corresponding spatial locations

• in genetics: genetic distance is correlated to spatial distance

Two types of spatial autocorrelation:

• positive: closer individuals are more similar than at random

• negative: closer individuals are more dissimilar than at random
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Spatial autocorrelation: illustration

Negative autocorrelationPositive autocorrelation No autocorrelation (random)
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Spatial weights and the lag vector

a

b

c

d

e

Matrix of spatial weights L

Row i : uniform weights for neighbours of i .

a b c d e
a 0.000 0.500 0.000 0.000 0.500
b 0.333 0.000 0.000 0.333 0.333
c 0.000 0.000 0.000 1.000 0.000
d 0.000 0.333 0.333 0.000 0.333
e 0.333 0.333 0.000 0.333 0.000

Let x be a variable with one value at each location.

The lag vector Lx computes mean values of neighbours.
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A variable and its lag-vector

Random:

 d = 2 

 −3  −1  1  3

Lag vector :
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)

Regression of Lx onto x :

Df Sum Sq Mean Sq F value Pr(>F)
x 1 0.02 0.02 0.06 0.8081
Residuals 98 31.53 0.32
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A variable and its lag-vector

Positive
autocorrelation:

 d = 2 

 −2.5  −1.5  −0.5  0.5  1.5  2.5

Lag vector :
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Regression of Lx onto x :

Df Sum Sq Mean Sq F value Pr(>F)
xG 1 65.91 65.91 245.69 0.0000
Residuals 98 26.29 0.27
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A variable and its lag-vector

Negative
autocorrelation:

 d = 2 

 −3  −1  1  3

Lag vector :
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Regression of Lx onto x :

Df Sum Sq Mean Sq F value Pr(>F)
xL 1 87.56 87.56 77.80 0.0000
Residuals 98 110.29 1.13
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Moran’s index: definition

Moran’s I :

I (x) =
xTLx

n

1

var(x)

where:

• x ∈ Rn : a centred variable (e.g. allele frequency, PC)

• L : matrix of spatial weights (nxn)

• Lx : lag vector

• I0 = −1
n−1 ≈ 0 : null value (no autocorrelation, i.e. random

spatial distribution)

⇒ Moran’s I varies like 〈x,Lx〉.
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Variable, lag-vector, Moran’s I
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Variable, lag-vector, Moran’s I
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Variable, lag-vector, Moran’s I

Negative
autocorrelation:

 d = 2 
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Lag vector :
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Testing Moran’s I

Monte Carlo procedure:

• compute I from the data

• permute randomly the locations to get a value of I under H0:
“x is distributed at random across space.”

• repeat this operation a large number of times to obtain a
reference distribution of I under H0

• compare initial value to the reference distribution to get a
p-value.
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Application: testing spatial structures in principal
components

Data (2 population, island model):
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Application: testing spatial structures in principal
components

PCA results, PC 1:
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Moran’s I test of PC1:
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p−value=0.000999
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Univariate /vs/ multivariate correlation

• Moran’s I is univariate

• solution: test a few principal components

• problems:
• does not use all the genetic information
• which PC to test?
• correction for multiple testing

⇒ need for multivariate tests
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Mantel’s correlation: rationale

Correlation between two unfolded distance matrices.

n

p

N

Correlation

n

n

Genetic
distances

n

n

Geographic
distances

n(n-1)/2

1

n(n-1)/2

1
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Mantel’s correlation: definition

Notations:

• X = [xij ] (X ∈ Rn×n): genetic distances

• Y = [yij ] (Y ∈ Rn×n): geographic distances

• x̄ , ȳ : means of x and y (excepting diagonals)

• sx , sy : standard deviation of x and y (excepting diagonals)

Original definition (unstandardized):

zM =

n−1∑
i=1

n∑
j=i+1

xij yij
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Mantel’s correlation: definition

Notations:

• X = [xij ] (X ∈ Rn×n): genetic distances

• Y = [yij ] (Y ∈ Rn×n): geographic distances

• x̄ , ȳ : means of x and y (excepting diagonals)

• sx , sy : standard deviation of x and y (excepting diagonals)

Standardized coefficient (true correlation):

rM =
1

d − 1

n−1∑
i=1

n∑
j=i+1

(
xij − x̄

sx
)(
yij − ȳ

sy
)
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Testing Mantel correlation

Monte Carlo procedure:

• compute zM or rM from the data

• permute randomly the rows and columns of one matrix,
recompute the test statistic (i.e., under H0: ”no correlation”)

• repeat this operation many times to generate a reference
distribution

• compare initial value to the reference distribution to get a
p-value.
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• compare initial value to the reference distribution to get a
p-value.
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Application: testing spatial structures

Data (2 population, island model):
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Outline

Introduction

Testing spatial structures
Moran’s Index
Mantel’s correlation
Correlogram

Multivariate analysis and spatial patterns

Inferring directionality
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Spatial dependence at different scales

Positive autocorrelation can indicate different patterns

Autocorrelation - Large scale Autocorrelation - Medium scale Autocorrelation - fine scale

⇒ How to detect the scale of spatial structures?
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Correlogram: rationale

Compute spatial autocorrelation (Moran’s I , Mantel’s rM) for
different distance classes.

Approach:

• define several classes of geographic distances

• for each class, define connectivity between locations

• set spatial weights of non-connected locations to zero

• compute spatial autocorrelation for each class
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Correlogram: rationale

Autocorrelation - Large scale Autocorrelation - Medium scale Autocorrelation - fine scale
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Application: describing spatial structures

Data (2 population, island model):
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Outline

Introduction

Testing spatial structures
Moran’s Index
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Multivariate analysis and spatial patterns

Inferring directionality
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Mapping principal components

Maps of the three first principal components of PCA.

Is this appropriate?
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Rationale of multivariate analyses (recall)

Finding the directions summarizing best the genetic diversity.

uaa ubb ucc+ +

udd uee+ +
= Synthetic variable

(Principal component)

ua ub uc ud ue,, , ,( )
Loadings

(Principal axis)

Principal axis

a
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c
d
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a  b  c  d  e
Alleles

Biological entities

Alleles

Biological entity

Spatial information is not taken into account.
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Using spatial information

• usual multivariate analyses ignore spatial information

• they may reveal obvious spatial structures, but overlook finer
patterns

⇒ need for taking spatial information into account
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Spatial Principal Component Analysis (sPCA): rationale

Principal components Xu should:

• display variability ⇒ max var(Xu)

• display positive autocorrelation ⇒ max I (Xu)

• (or) display negative autocorrelation ⇒ min I (Xu)
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Formalization of the problem
Notations:

• X: matrix of centered (possibly scaled) allele frequencies
(X ∈ Rn×p)

• L: matrix of spatial weights (L ∈ Rn×n)

• u: principal axis made of p loadings (u ∈ Rp , ‖u‖2 = 1)

• Xu: principal component

The criterion of the sPCA is:

g : Rn×p × Rn×n × Rp −→ R
(X,L,u) 7−→ g(X,L,u) = var(Xu)I (Xu)

Additional constraints:

• ‖u‖2 = 1

• successive axes must be orthogonal
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Solution

• It can be shown that:

g(X,L,u) =
1

2n
uTXT (L + LT )Xu

where XT (L + LT )X is symmetric.

• The extremums of g(X,L,u) are then given by the eigenanalysis of:

1

2n
XT (L + LT )X

• We obtain a set of orthonormal eigenvectors {u1, · · · ,ur}
associated to r non-null eigenvalues {λ1, · · · , λr} (with λi > λi+1,
i = 1, ..., r − 1) verifying:

λr = var(Xur )I (Xur ) ≤ g(X,L,ui) ≤ var(Xu1)I (Xu1) = λ1
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Spatial Principal Component Analysis (sPCA): outputs

biological
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(allele loadings)
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Spatial structures
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Spatial Principal Component Analysis (sPCA): example

Chamois (Rupicapra rupicapra) in the Bauges mountains.

What is the genetic structure of this population (reproduction
units)?
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Spatial Principal Component Analysis (sPCA): example

PCA results: no spatial structure, 4 outliers
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Spatial Principal Component Analysis (sPCA): example

sPCA results: several spatial structures (confirmed by field
observations).
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Multivariate method do not infer directionality

Principal Components have no direction.

(Cavalli-Sforza et al. 1993, Science)

How to infer migrations?

45/49



Introduction Testing spatial structures Multivariate analysis and spatial patterns Inferring directionality

Multivariate method do not infer directionality

Principal Components have no direction.

(Cavalli-Sforza et al. 1993, Science)

How to infer migrations?

45/49



Introduction Testing spatial structures Multivariate analysis and spatial patterns Inferring directionality

The ’bottleneck’ effect

Original population

migration

New population

population growth
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Effects of successive bottlenecks

Progressive loss of genetic diversity within populations.

Distance from origin

D
iv

er
si

ty

bottleneck bottleneck bottleneck
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Expected patterns of migrations

Diversity within population decreases with distance from the origin

N -  Diversity  +

Origin
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Patterns of migrations: example

Reconstructing the spread of Malaria worlwide.

(Tanabe et al. 2010, Current Biology)

Plasmodium falciparum accompanied Human migrations.
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