Practical course using the \texttt{R} software

Multivariate analysis of genetic markers as a tool to explore the genetic diversity: some examples

Thibaut Jombart

09/09/09

Abstract

This practical course aims at illustrating some possible applications of multivariate analyses to genetic markers data, using the \texttt{R} software [14]. Although a basic knowledge of the \texttt{R} language is assumed, most necessary commands are provided, so that coding should not be an obstacle. Two exercises are proposed, which go through different topics in genetic data analysis, respectively the study of spatial genetic structures, and the coherence of information coming from different markers. After going through the first section (‘Let’s start’), you should feel free to get to the exercise you want, as these are meant to be independent. This practical course uses mostly the \texttt{adegenet} [10] and \texttt{ade4} packages [4, 7, 6], but others like \texttt{adehabitat} [2, 1], \texttt{genetics} [15] and \texttt{hierfstat} [8] are also used.
Contents

1 Let’s start ... 3
 1.1 Loading the packages 3
 1.2 How to get information? 3

2 Spatial genetic structure of the chamois in the Bauges mountains ... 4
 2.1 An overview of the data 5
 2.2 Standard analyses .. 7
 2.3 spatial Principal Component Analysis 15

3 Different pictures of biodiversity: African and French cattle breeds .. 20
 3.1 An overview of the data - basic analyses 21
 3.2 A first glance: Principal Component Analysis 26
 3.3 A deeper look: Multiple Co-Inertia Analysis 30
1 Let’s start

1.1 Loading the packages

Before going further, we shall make sure that all we need is installed on the computer. Launch R, and make sure that the version being used is greater than 2.8.1 by typing:

```r
> R.version.string
```

```
[1] "R version 2.9.2 (2009-08-24)"
```

The next thing to do is check that relevant packages are installed. To load an installed package, use `library` instruction; for instance:

```r
> library(adegenet)
```

loads `adegenet` if it is installed (and issues an error otherwise). To get the version of a package, use:

```r
> packageDescription("adegenet", fields = "Version")
```

```
[1] "1.2-3"
```

`adegenet` version should read 1.2-3.

In case a package would not be installed, you can install it by using `install.packages`. To install all the required dependencies, specify `dep=TRUE`. For instance, the following instruction should install `adegenet` with all its dependencies (it can take up to a few minutes, so don’t run it unless `adegenet` is not installed):

```r
> install.packages("ape", dep = TRUE)
```

Using the previous instructions, load (and install if required) the packages `adegenet`, `ade4`, `spdep`, `genetics`, and `hierfstat`.

1.2 How to get information?

There are several ways of getting information about R in general, and about `adegenet` in particular. Function `help.search` is used to look for help on a given topic. For instance:

```r
> help.search("Hardy-Weinberg")
```

replies that there is a function `HWE.test.genind` in the `adegenet` package, and functions `HWE.chisq`, `HWE.exact` and `HWE.test` in `genetics`. To get help for a given function, use `?foo` where ‘foo’ is the function of interest. For instance:

```r
> ?(spca)
```
will open the manpage of the spatial principal component analysis [11]. At
the end of a manpage, an ‘example’ section often shows how to use a func-
tion. This can be copied and pasted to the console, or directly executed
from the console using example. For further questions concerning R, the
function RSiteSearch is a powerful tool to make an online research using
keywords in R’s archives (mailing lists and manpages).

adegenet has a few extra documentation sources. Information can be
found from the website (http://adegenet.r-forge.r-project.org/), in
the ‘documents’ section, including two tutorials and a manual which includes
all manpages of the package. To open the website from R, use:

> adegenetWeb()

The same can be done for tutorials, using adegenetTutorial (see manpage
to choose the tutorial to open).

You will also find a listing of the main functions of the package typing:

> ?(adegenet)

Note that you can also browse help pages as html pages, using:

> help.start()

If '/usr/bin/firefox' is already running, it is *not* restarted, and
you must switch to its window.
Otherwise, be patient ...

To go to the adegenet page, click ‘packages’, ‘adegenet’, and ‘adegenet-
package’.

Lastly, several mailing lists are available to find different kinds of infor-
mation on R; to name a few:

R-help (https://stat.ethz.ch/mailman/listinfo/r-help): general ques-
tions about R
R-sig-genetics (https://stat.ethz.ch/mailman/listinfo/r-sig-genetics):
genetics in R
adegenet forum (https://lists.r-forge.r-project.org/cgi-bin/mailman/
listinfo/adegenet-forum): adegenet and multivariate analysis of
genetic markers

2 Spatial genetic structure of the chamois
in the Bauges mountains

The chamois (Rupicapra rupicapra) is a conserved species in France. The
Bauges mountains is a protected area in which the species has been recently
studied. One of the most important questions for conservation purpose relates to whether individuals from this area form a single reproductive unit, or whether they are structured into sub-groups, and if so, what causes are likely to cause this structuring.

While field observations are very scarce and do not allow to answer this question, genetic data can be used to tackle the issue, as departure from panmixia should result in genetic structure. The dataset *rupica* contains 335 georeferenced genotypes of Chamois from the Bauges mountains for 9 microsatellite markers, which we propose to analyse in this exercise.

2.1 An overview of the data

We first load the data:

```r
> data(rupica)
> rupica
```

```
#####################
### Genind object ###
#####################
- genotypes of individuals -

S4 class:  genind
@call:    NULL
@tab: 335 x 55 matrix of genotypes
@ind.names: vector of 335 individual names
@loc.names: vector of 9 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 55 columns of @tab
@all.names: list of 9 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: - empty -
@pop.names: - empty -
@other: a list containing: xy mnt showBauges

*rupica* is a typical *genind* object, which is the class of objects storing genotypes (as opposed to population data) in *adegenet*. *rupica* also contains topographic information about the sampled area, which can be displayed by calling *rupica$other$showBauges*. For instance, the spatial distribution of the sampling can be displayed as follows:

```r
> rupica$other$showBauges()
> points(rupica$other$xy, col = "red", pch = 20)
```
This spatial distribution is clearly not random, but arranged into loose clusters; this can be confirmed by superimposing a kernel density curve (in blue) on the previous figure:

```r
> rupica$other$showBauges()
> s.kde2d(rupica$other$xy, add.plot = TRUE)
> points(rupica$other$xy, col = "red", pch = 20)
```
However, this spatial clustering is not strong enough to assign safely all genotypes to a given geographic group. Hence, further analyses would have to be performed on individuals rather than groups of individuals.

2.2 Standard analyses

As a prior clustering of genotypes is not known, we cannot employ usual $F_{ST}$-based approaches to detect genetic structuring. However, genetic structure could still result in a deficit of heterozygocity. The `summary` of `genind` objects provides expected and observed heterozygocity for each locus, which allows for a comparison:

```r
> rupica.smry <- summary(rupica)

Total number of genotypes: 335
Population sample sizes:
335

Number of alleles per locus:
L1 L2 L3 L4 L5 L6 L7 L8 L9
7 10 7 6 5 5 6 4 5

Number of alleles per population: 1
```
The red line indicate identity between both quantities. What can we say about heterozygocity in this population? The following test provides further insights to answer this question:

```r
> t.test(rupica.smry$Hexp, rupica.smry$Hobs, paired = TRUE, var.equal = TRUE)

Paired t-test

 data: rupica.smry$Hexp and rupica.smry$Hobs
t = 0.9461, df = 8, p-value = 0.3718
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
```
We can seek a global picture of the genetic diversity among genotypes using a Principal Component Analysis (PCA, [13, 9], \texttt{dudi.pca} in \texttt{ade4} package). The analysis is performed on a table of standardised alleles frequencies, obtained by \texttt{scaleGen}:

\begin{verbatim}
> rupica.X <- scaleGen(rupica, method = "binom")
> rupica.pca1 <- dudi.pca(rupica.X, cent = FALSE, scale = FALSE)
\end{verbatim}

The function \texttt{dudi.pca} displays a barplot of eigenvalues and asks for a number of retained principal components. Eigenvalues represent the amount of genetic diversity (as measured by the multivariate method being used) represented by each principal component. An abrupt decrease in eigenvalues is likely to indicate the boundary between true patterns and non-interpretable structures. In this case, we shall examine the first two principal components (though nothing really clear emerges from the eigenvalues).

\begin{verbatim}
> rupica.pca1
\end{verbatim}
nf = 2)
$nf: 2 axis-components saved
$rank: 45
eigen values: 1.561 1.34 1.168 1.097 1.071 ...
    vector length    mode    content
1  $cw 55      numeric column weights
2  $lw 335    numeric row weights
3  $eig 45    numeric eigen values

data.frame nrow ncol content
1  $tab 335 55      modified array
2  $li 335 2       row coordinates
3  $li 335 2       row normed scores
4  $co 55 2        column coordinates
5  $ci 55 2        column normed scores
other elements: cent norm

A dudi object contains various information; in the case of PCA, principal axes (loadings), principal components (synthetic variable), and eigenvalues are respectively stored in $c1, $li, and $eig slots. The function s.label can be used to display to two first components; a kernel density (s.kde2d) is used for a better assessment of the distribution of the genotypes onto the principal axes:

> s.label(rupica.pca1$li)
> s.kde2d(rupica.pca1$li, add.p = TRUE, cpoint = 0)
> add.scatter.eig(rupica.pca1$eig, 2, 1, 2)
What can we say about the genetic diversity among these genotypes as inferred by PCA? The function `loadingplot` allows to visualize the contribution of each allele, expressed as squared loadings, for a given principal component. This figure then gives further clues about the revealed structure:

```r
> loadingplot(rupica.pca1$c1^2)
```
We can get back to the genotypes for the concerned markers (e.g., Bm203) to check whether the highlighted genotypes are indeed uncommon. `truenames` extracts the table of allele frequencies from a `genind` object:

```r
> X <- truenames(rupica)
> class(X)
[1] "matrix"
> dim(X)
[1] 335 55
> bm203.221 <- X[, "Bm203.221"]
> table(bm203.221)

bm203.221
 0 0.00597014925373134 0.5 330 1 4
```

Only 4 genotypes possess one copy of this allele (the second result corresponds to a replaced missing data). Which individuals are they?

```r
> rownames(X)[bm203.221 == 0.5]
```
Conclusion?

Just to make sure that this analysis shows no spatial pattern, we can map geographically the principal components. The function `s.value` is well-suited to do so, using black and white squares of variable size for positive and negative values. For instance:

```r
> s.value(cbind(1:11, rep(1, 11)), -5:5, cleg = 0)
> text(1:11, rep(1, 11), -5:5, col = "red", cex = 1.5)
```

We can then apply this graphical representation to the first two principal components of the PCA:

```r
> showBauges <- rupica$other$showBauges
> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[, 1], add.p = TRUE, cleg = 0.5)
> title("PCA - first PC", col.main = "yellow", line = -2, cex.main = 2)
```
> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[, 2], add.p = TRUE, csize = 0.7)
> title("PCA - second PC", col.main = "yellow", line = -2, cex.main = 2)
What can we say about spatial genetic structure as inferred by PCA?

### 2.3 spatial Principal Component Analysis

PCA did not reveal any kind of spatial genetic structure, but is not anyway meant to do so; most likely, it will fail to detect spatial genetic structures that are not associated with the strongest genetic differentiation. The spatial Principal Component Analysis (sPCA, [11]) has been developed to include spatial information in the analysis of genetic data. Although implemented in adegenet, sPCA needs spatial methods from the spdep package, which should thus be loaded:

```R
> library(spdep)
```

sPCA first requires the spatial proximities between genotypes to be modeled. The most convenient way to do so is to define geographic neighbours according to a given, preferably objective criterion. This amounts to constructing a spatial graph on which neighbours are linked by an edge. The function `chooseCN` proposes several spatial graphs (try `example(chooseCN)` for an example) that can be chosen interactively. In the case of the Chamois, we can use the intersection of home ranges as a criterion for neighbourhood; this amounts to considering as neighbours pairs of individuals separated by less than 2300 m.
Knowing that spatial coordinates of individuals are stored in `rupica$other$xy`, use `chooseCN` to build the corresponding spatial graph. Save the resulting object as `rupica.graph`; this object should look like this (displaying it may take a few seconds):

```
> rupica.graph

Neighbour list object:
Number of regions: 335
Number of nonzero links: 18018
Percentage nonzero weights: 16.05525
Average number of links: 53.78507
```

```
> plot(rupica.graph, rupica$other$xy)
> title("rupica.graph")
```

From there, we can use the `spca` function. Note that it would also be possible to specify the parameters of the spatial graph as arguments of `spca`.

```
> rupica.spca1 <- spca(rupica, cn = rupica.graph)
```
Like `dudi.pca`, `spca` displays a barplot of eigenvalues, but unlike in PCA, eigenvalues of sPCA can also be negative. This is because the criterion optimized by the analysis can have positive and negative values, corresponding respectively to positive and negative autocorrelation. In this case, only the principal components associated with the two first positive eigenvalues (in red) shall be retained.

The printing of `spca` objects is more explicit than `dudi` objects, but named with the same conventions:

```r
> rupica.spca1
```

```
##
spatial Principal Component Analysis#
##
class: spca
$call: spca(obj = rupica, cn = rupica.graph, scannf = FALSE, nfposi = 2, nfnega = 0)
$nfposi: 2 axis-components saved
$nfnega: 0 axis-components saved
Positive eigenvalues: 0.03018 0.01408 0.009211 0.006835 0.004529 ...
Negative eigenvalues: -0.008611 -0.006414 -0.004451 -0.003963 -0.003329 ...
```

```
vector length mode content
1 $eig 45 numeric eigenvalues

data.frame nrow ncol content
1 $c1 55 2 principal axes: scaled vectors of alleles loadings
2 $li 335 2 principal components: coordinates of entities ('scores')
3 $ls 335 2 lag vector of principal components
4 $as 2 2 pca axes onto spca axes
```
Unlike usual multivariate analyses, eigenvalues of sPCA are composite: they measure both the genetic diversity (variance) and the spatial structure (spatial autocorrelation measured by Moran’s I). This decomposition can also be used to choose which principal component to interpret. The function `screeplot` allows to display this information graphically:

```r
> screeplot(rupica.spca1)
```

While $\lambda_1$ indicates with no doubt a structure, the second eigenvalue, $\lambda_2$ is less clearly distinct from the successive values. Thus, we shall keep in mind this uncertainty when interpreting the second principal component of the analysis.

Let us now visualise the identified spatial structures, as we did for the PCA results:

```r
> showBauges()
> s.value(rupica$other$xy, rupica.spca1$li[, 1], add.p = TRUE, + csize = 0.7)
> title("sPCA - first PC", col.main = "yellow", line = -2, cex.main = 2)
```
While the pattern is clear enough, we can still clarify the results using lagged scores, which allow a better perception of positively autocorrelated structures (by denoisifying data):

```r
> showBauges()
> s.value(rupica$other$xy, rupica.spca1$ls[, 1], add.p = TRUE,
+ csize = 0.7)
> title("sPCA - first lagged PC", col.main = "yellow", line = -2,
+ cex.main = 2)
```
How would you interpret this result? How does it compare to results obtained by PCA? What likely inference can we make about the way the landscape influences this population of Chamois?

The second structure remains to be interpreted; using the same graphical representation as for the first principal component, try and visualise the second principal component. Some field observation suggest that it is not artefactual. How would you interpret this second structure?

To finish, you can try representing both structures at the same time using the color coding introduced by [3] (colorplot).

3 Different pictures of biodiversity: African and French cattle breeds

The study of the genetic diversity for conservation purposes asks the question of which markers should be used for such studies. In the case of domestic cattle breeds, the FAO http://www.fao.org/ recommended using a panel of 30 microsatellites for conservation genetics studies. The dataset microbov provides the genotypes of 704 cattle structured in two species and 15 breeds for the 30 microsatellites recommended by the FAO.
One question of interest, which can be asked through this dataset, relates to whether all these markers provide the same information, and whether a smaller subset of markers could be used to achieve the same level of resolution.

### 3.1 An overview of the data - basic analyses

We first load the data:

```r
> data(microbov)
> microbov

Genind object

- genotypes of individuals -

S4 class: genind
@call: genind(tab = truenames(microbov)$tab, pop = truenames(microbov)$pop)
@tab: 704 x 373 matrix of genotypes
@ind.names: vector of 704 individual names
@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 373 columns of @tab
@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optional contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual
@other: a list containing: coun, breed, spe

microbov is a typical genind object, which is the class of objects storing genotypes in adegenet. It also contains extra information (in microbov$other) relating to the origin (coun, Africa or France), the breed (breed), and the species (spe, Bos taurus or Bos indicus) of the individuals.

The function summary gives an overview of the data:

```r
> microbov.smry <- summary(microbov)

# Total number of genotypes: 704

# Population sample sizes:

<table>
<thead>
<tr>
<th>Population</th>
<th>Borgou</th>
<th>Zebu</th>
<th>Lagunaire</th>
<th>NDama</th>
<th>Somba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Aubrac</td>
<td>50</td>
<td>47</td>
<td>61</td>
<td>31</td>
<td>55</td>
</tr>
<tr>
<td>Bazadais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlondeAquitaine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BretPieNoire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charolais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>49</td>
<td>49</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

# Number of alleles per locus:

<table>
<thead>
<tr>
<th>Loci</th>
<th>9</th>
<th>7</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>13</th>
<th>12</th>
<th>16</th>
<th>14</th>
<th>14</th>
<th>10</th>
<th>10</th>
<th>9</th>
<th>19</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>L02</td>
<td></td>
</tr>
<tr>
<td>L03</td>
<td></td>
</tr>
<tr>
<td>L04</td>
<td></td>
</tr>
<tr>
<td>L05</td>
<td></td>
</tr>
<tr>
<td>L06</td>
<td></td>
</tr>
<tr>
<td>L07</td>
<td></td>
</tr>
<tr>
<td>L08</td>
<td></td>
</tr>
<tr>
<td>L09</td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td></td>
</tr>
<tr>
<td>L11</td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td></td>
</tr>
<tr>
<td>L14</td>
<td></td>
</tr>
<tr>
<td>L15</td>
<td></td>
</tr>
<tr>
<td>L16</td>
<td></td>
</tr>
<tr>
<td>L17</td>
<td></td>
</tr>
<tr>
<td>L18</td>
<td></td>
</tr>
<tr>
<td>L19</td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td></td>
</tr>
<tr>
<td>L21</td>
<td></td>
</tr>
<tr>
<td>L22</td>
<td></td>
</tr>
<tr>
<td>L23</td>
<td></td>
</tr>
<tr>
<td>L24</td>
<td></td>
</tr>
<tr>
<td>L25</td>
<td></td>
</tr>
<tr>
<td>L26</td>
<td></td>
</tr>
<tr>
<td>L27</td>
<td></td>
</tr>
<tr>
<td>L28</td>
<td></td>
</tr>
<tr>
<td>L29</td>
<td></td>
</tr>
<tr>
<td>L30</td>
<td></td>
</tr>
</tbody>
</table>

| 17 12 16 13 12 15 8 22 21 9 |
Number of alleles per population:

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td>235</td>
<td>143</td>
<td>179</td>
<td>212</td>
<td>146</td>
<td>196</td>
<td>176</td>
<td>200</td>
<td>213</td>
<td>186</td>
<td>191</td>
<td>168</td>
<td>188</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of missing data:

| [1] | 2.320076 |

Observed heterozygosity:

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
<th>L05</th>
<th>L06</th>
<th>L07</th>
<th>L08</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5530086</td>
<td>0.5399129</td>
<td>0.6905444</td>
<td>0.4508076</td>
<td>0.5974212</td>
<td>0.2904624</td>
<td>0.5860534</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L09</th>
<th>L10</th>
<th>L11</th>
<th>L12</th>
<th>L13</th>
<th>L14</th>
<th>L15</th>
<th>L16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6848306</td>
<td>0.5771429</td>
<td>0.6603221</td>
<td>0.7054598</td>
<td>0.5953079</td>
<td>0.7052023</td>
<td>0.7979943</td>
<td>0.6384505</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L17</th>
<th>L18</th>
<th>L19</th>
<th>L20</th>
<th>L21</th>
<th>L22</th>
<th>L23</th>
<th>L24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4534884</td>
<td>0.6396527</td>
<td>0.6474074</td>
<td>0.6285714</td>
<td>0.6603499</td>
<td>0.6569343</td>
<td>0.5941807</td>
<td>0.7381295</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L25</th>
<th>L26</th>
<th>L27</th>
<th>L28</th>
<th>L29</th>
<th>L30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6762178</td>
<td>0.7722063</td>
<td>0.6174785</td>
<td>0.6891117</td>
<td>0.6810730</td>
<td>0.4392387</td>
<td></td>
</tr>
</tbody>
</table>

Expected heterozygosity:

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
<th>L05</th>
<th>L06</th>
<th>L07</th>
<th>L08</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7075198</td>
<td>0.6004379</td>
<td>0.7807931</td>
<td>0.5373943</td>
<td>0.7899071</td>
<td>0.7613320</td>
<td>0.4945057</td>
<td>0.6859640</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L09</th>
<th>L10</th>
<th>L11</th>
<th>L12</th>
<th>L13</th>
<th>L14</th>
<th>L15</th>
<th>L16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8336124</td>
<td>0.7678602</td>
<td>0.7747632</td>
<td>0.8217379</td>
<td>0.7471427</td>
<td>0.7597794</td>
<td>0.8924578</td>
<td>0.7546062</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L17</th>
<th>L18</th>
<th>L19</th>
<th>L20</th>
<th>L21</th>
<th>L22</th>
<th>L23</th>
<th>L24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.636998</td>
<td>0.7746996</td>
<td>0.7489997</td>
<td>0.7805834</td>
<td>0.7682354</td>
<td>0.7719260</td>
<td>0.7693717</td>
<td>0.8365613</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L25</th>
<th>L26</th>
<th>L27</th>
<th>L28</th>
<th>L29</th>
<th>L30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7417581</td>
<td>0.8921047</td>
<td>0.6876811</td>
<td>0.7718615</td>
<td>0.8882143</td>
<td>0.5648676</td>
<td></td>
</tr>
</tbody>
</table>

This allows, for instance, to compare observed and expected heterozygocity at each locus:

```r
> plot(microbov.smry$Hexp, microbov.smry$Hobs, main = "Observed vs expected heterozygocity")
> abline(0, 1, col = "red")
```

![Observed vs expected heterozygocity](image)

What can we tell about these populations? Is this result surprising?

To infer genetic differentiation using $F_{ST}$-based approaches, we have to check that populations are at Hardy-Weinberg equilibrium for each locus.
Given that we have 15 breeds for 30 loci to analyse, we have to perform 15x30=450 tests. Fortunately, the function `HWE.test.genind` does this job, returning either a list of detailed tests, or a matrix of p-values. In our case, interpreting each test and correcting for multiple testing would quickly become cumbersome. Rather, we shall describe how p-values are distributed across populations and across markers. We perform Hardy-Weinberg tests, asking for a matrix of p-values:

```r
> microbov.HWE <- HWE.test.genind(microbov, res = "matrix")
> hist(microbov.HWE, col = "pink", main = "Distribution of HWE test p-values", +
 nclass = 60)
> points(as.vector(microbov.HWE), rep(1, 450), col = "red", pch = "|")
```

![Distribution of HWE test p-values](image)

While a majority of tests do not indicate deviation from Hardy-Weinberg equilibrium, some exceptions seem to exist. Are these structured by populations?

```r
> barplot(apply(microbov.HWE, 1, mean), col = "deepskyblue1", main = "Distribution of HWE test mean p-values per population", +
 ylab = "mean p-value", las = 3)
```
Are these structured by markers?

```R
> barplot(apply(microbov.HWE, 2, mean), col = "green2", main = "Distribution of HWE test mean p-values per marker", ylab = "mean p-value", las = 3)
```

```R
> barplot(apply(microbov.HWE, 2, mean), col = "green2", main = "Distribution of HWE test mean p-values per marker", ylab = "mean p-value", las = 3)
```
What would you conclude? Toward the end of this exercise, we shall remember that INRA35 seems to be a particular marker.

Genetic differentiation can be tested for multiallelic data using Goudet’s $G$ test, implemented in `hierfstat`, and wrapped for `genind` objects by `gstat.randtest`. Basically, we can test the significance of the genetic differentiation between breeds, which is the default ‘population’ of the genotypes. For simplicity (and because it does not alter the results), all markers (including INRA35) are kept in this test:

```r
> microbov.gtest1 <- gstat.randtest(microbov, nsim = 199)
> microbov.gtest1
```

Monte-Carlo test
Call: gstat.randtest(x = microbov, nsim = 199)

Observation: 23534.67

Based on 199 replicates
Simulated p-value: 0.005
Alternative hypothesis: greater

```
 Std.Obs Expectation Variance
 124.838 5480.433 20915.339
```

> plot(microbov.gtest1)

The histogram shows the distribution of the test statistic obtained by a Monte Carlo procedure (permutation of the group factor). The original
value of the statistic (on the right) being hugely superior to these values, there is no doubt that the genetic structuring is very significant. However, we can wonder if this structuration among breeds persists after accounting for the species differences. This can be tested using the same function:

```r
> microbov.gtest2 <- gstat.randtest(microbov, nsim = 199, sup.pop = microbov$other$spe, + method = "within")
> microbov.gtest2

Monte-Carlo test
Call: gstat.randtest(x = microbov, method = "within", sup.pop = microbov$other$spe,
 nsim = 199)
Observation: 23534.67
Based on 199 replicates
Simulated p-value: 0.005
Alternative hypothesis: greater

 Std.Obs Expectation Variance
107.8852 10425.8523 14763.9883

> plot(microbov.gtest2)

Is there a significant genetic differentiation between breeds once species differentiation has been partialled out?

3.2 A first glance: Principal Component Analysis

Now that we know that strong genetic structures exists among the considered breeds, we can try to get a picture of it. Principal Component Analysis (PCA [13, 9]) is well suited for a first glance at the data. PCA is implemented
in the \texttt{dudi.pca} function of the \textit{ade4} package. The analysis is performed on a table of standardised alleles frequencies, obtained by \texttt{scaleGen} (which also replaces missing values adequately):

\begin{verbatim}
> microbov.X <- scaleGen(microbov, method = "binom")
> microbov.pca1 <- dudi.pca(microbov.X, cent = FALSE, scale = FALSE)
\end{verbatim}

The function \texttt{dudi.pca} displays a barplot of eigenvalues and asks for a number of retained principal components. Eigenvalues represent the amount of genetic diversity (as measured by the multivariate method being used) contained in each principal component. An abrupt decrease in eigenvalues is likely to indicate the boundary between strong and non-interpretable structures. In this case, the first three eigenvalues clearly indicate strong structures; the first three principal components are thus retained.

A \texttt{dudi} object contains various information; in the case of PCA, principal axes (loadings), principal components (synthetic variable), and eigenvalues are respectively stored in \texttt{microbov.pca1$c1}, \texttt{microbov.pca1$li}, and \texttt{microbov.pca1$eig}. The function \texttt{s.class} can be used to display the two first principal components, while grouping genotypes by populations:

\begin{verbatim}
> par(bg = "lightgrey")
> palette <- rainbow(50)
> s.class(microbov.pca1$li, pop(microbov), col = 1:15, sub = "PCA - PC 1 and 2", + csub = 2)
> add.scatter.eig(microbov.pca1$eig[1:60], 3, 1, 2, posi = "top")
\end{verbatim}
PCA - PC 1 and 2

> par(bg = "lightgrey")
> s.class(microbov.pca1$li, xax = 1, yax = 3, pop(microbov), col = 1:15,
+ sub = "PCA - PC 1 and 3", csub = 2)
> add.scatter.eig(microbov.pca1$eig[1:60], 3, 1, 3, posi = "top")
These figures display the ‘best’ picture of genetic variability among the genotypes achievable in three dimensions. How would you interpret the resulting structures?

Now that clear patterns have been identified, we can ask how each marker contributes to showing these structures. The contribution of each marker (measured as squared loadings) can be displayed using `loadingplot`:

```r
> loadingplot(microbov.pca1$cl^2, main = "Allele contributions to the PC1")
```
From this picture, could you tell if some markers play a more important role in the analysis than others? This was the contribution of alleles to the first principal component. Using the same function and the argument `axis`, try to obtain the same figure for the second and third principal components. Are the conclusions any different (if yes, how)?

3.3 A deeper look: Multiple Co-Inertia Analysis

PCA is not the most appropriate tool to compare the information provided by different markers about the populations (i.e., breeds). Indeed, it only seeks principal axes of maximum genetic variability from all alleles, while a more appropriate approach would seek different principal components for each marker separately, and then compare them. The Multiple Co-Inertia Analysis (MCOA, [5, 12]) is especially devoted to this task. It performs separate analyses for each marker, and then coordinates these analyses so as to highlight the common information they provide about populations. From these coordinated analyses, it builds a compromise, that is, a typology of population reflecting the consensus information provided by the markers. It also provides a direct measure of the contribution of each marker to this consensus information.
First of all, given that within-breed variability seems negligible compared to between-breed variability, we reduce data to counts of alleles per populations (losing the distinction between individuals). Objects storing population data in adegenet are \texttt{genpop} objects. This transformation is achieved by \texttt{genind2genpop}:

\begin{verbatim}
> bov <- genind2genpop(microbov)
Converting data from a genind to a genpop object...
...done.

> bov

Genpop object # #
- Alleles counts for populations -
S4 class: genpop
@call: genind2genpop(x = microbov)
@tab: 15 x 373 matrix of alleles counts
@pop.names: vector of 15 population names
@loc.names: vector of 30 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 373 columns of @tab
@all.names: list of 30 components yielding allele names for each locus
@ploidy: 2
@type: codom
@other: a list containing: coun breed spe

Data are then separated by marker using \texttt{seploc}, and only tables of allele counts are retained for further analysis:

> lbov <- seploc(bov)
> 1X <- lapply(lbov, truenames)
> class(1X)
[1] "list"
> names(1X)

[1] "INRA63" "INRA5" "ETH225" "ILSTS5" "HEL5" "HEL1" "INRA35"
[8] "ETH152" "INRA23" "ETH10" "HEL9" "CSSM66" "INRA32" "ETH3"
[15] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"
[22] "CSRM60" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
[29] "TGLA53" "SPS115"

> 1X$INRA63
\end{verbatim}
<table>
<thead>
<tr>
<th>Marker</th>
<th>Borgou</th>
<th>Zebu</th>
<th>Lagunaire</th>
<th>NDama</th>
<th>Somba</th>
<th>Aubrac</th>
<th>Bazadais</th>
<th>BlondeAquitaine</th>
<th>BretPieNoire</th>
<th>Charolais</th>
<th>Gascon</th>
<th>Limousin</th>
<th>MaineAnjou</th>
<th>Montbellard</th>
<th>Salers</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA63.167</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>INRA63.171</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INRA63.173</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>INRA63.175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INRA63.177</td>
<td>0</td>
</tr>
</tbody>
</table>

kbov contains counts of alleles per population separately for each marker. After turning these into allele frequencies, each table is analysed by a PCA. The method is applied to all 30 tables in a single command using `lapply`:

```r
> lX <- lapply(lX, prop.table, 1)
> lPCA <- lapply(lX, dudi.pca, center = TRUE, scale = FALSE, scannf = FALSE, + nf = 3)
> class(lPCA)
[1] "list"
> names(lPCA)
[1] "INRA63" "INRA65" "ETH225" "ILSTS5" "HEL5" "HEL1" "INRA35"
[8] "ETH152" "INRA23" "ETH10" "HEL9" "CSSM66" "INRA32" "ETH3"
[15] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"
[22] "CSRM60" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
[29] "TGLA53" "SPS115"
> lPCA$INRA63

Duality diagramm
class: pca dudi
$call: FUN(df = X[[1L]], center = TRUE, scale = FALSE, scannf = FALSE, n = 3)
$n: 3 axis-components saved
To visualise the results of a given analysis (here, INRA63), one can use:

```r
> s.label(lPCA$INRA63$li)
> add.scatter.eig(lPCA$INRA63$eig, 3, 1, 2)
```

Now, using a `for` loop (or a `lapply`, or less elegantly several copy-paste operations), try and display results of other markers. Can you compare the information they provide? Note that the situation is complicated by the fact that the first principal component of one marker might resemble best
the third of another marker, or even a mixture of several components.

Let us try coordinating these analyses using MCOA. The method is implemented as the function `mcoa` in the `ade4` package. It demands data to be stored as a `ktab` object, which we obtain by:

```r
> bov.ktab <- ktab.list.dudi(lPCA)
> bov.mcoa1 <- mcoa(bov.ktab)
```

Proceed like in previous analyses to select the number of retained principal components.

```r
> bov.mcoa1

Multiple Co-inertia Analysis
list of class mcoa

$pseudoeig: 15 pseudo eigen values
11.4 3.467 2.274 0.8631 0.4978 ...$

$call: mcoa(X = bov.ktab, scannf = FALSE, nf = 3)$

$nf: 3 axis saved$

<table>
<thead>
<tr>
<th>data.frame nrow ncol content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $SynVar 15 3 synthetic scores</td>
</tr>
<tr>
<td>2 $axis 373 3 co-inertia axis</td>
</tr>
<tr>
<td>3 $Tli 450 3 co-inertia coordinates</td>
</tr>
<tr>
<td>4 $Tl1 450 3 co-inertia normed scores</td>
</tr>
<tr>
<td>5 $Tax 120 3 inertia axes onto co-inertia axis</td>
</tr>
</tbody>
</table>
```
The content of a mcoa object is a bit more complicated than that of PCA (dudi object), but only bits are useful here. bov.mcoa1$Tli contains principal components of coordinated analyses for the different markers, while bov.mcoa1$SynVar contains the compromise, i.e. the typology of populations emerging as a consensus among the markers. bov.mcoa1$cov2 gives the contribution of each marker to each structure of the compromise, and can be used to assess discrepancies in the information yielded by the different loci.

Coordinated analyses can be displayed like separated analyses:

```r
> newCoord <- split(bov.mcoa1$Tli, bov.mcoa1$TL[, 1])
> names(newCoord) <- locNames(bov)
> par(mfrow = c(2, 2))
> for (i in 1:4) {
+ s.label(newCoord[[i]], xax = 1, yax = 2, sub = names(newCoord)[i],
+ csub = 1.5)
+ }
```
Use the commands above to plot results of different markers, making sure to visualise the plan of the first and third principal components as well. How does it compare to the results obtained with previous (uncoordinated) analyses?

The compromise between all these analyses is very similar to the usual PCA of all data:

```r
> s.label(bov.mcoa1$SynVar)
> add.scatter.eig(bov.mcoa1$pseudoeig, 3, 1, 2)
```
> s.label(bov.mcoa1$SynVar, xax = 1, yax = 3)
> add.scatter.eig(bov.mcoa1$pseudoeig, 3, 1, 3)
However, we now gained further information about how markers contribute to this figure. Try and represent graphically the marker contributions stored in `bov.mcoa1$cov2` for the three structures of the compromise; one example of result for the first structure would be:
What can we say about the general consistency of these markers? Are there redundant markers? Are there ‘outlying’ markers? Would it be possible to achieve the same structuring without using the full panel of 30 microsatellites recommended by the FAO?

References


