Multivariate analysis of genetic data: an introduction

Thibaut Jombart

MRC Centre for Outbreak Analysis and Modelling
Imperial College London

XXIV Simposio Internacional De Estadística
Bogotá, 25th July 2014
Outline

Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations
Multivariate data: some examples

Association between individuals? Correlations between variables?
Multivariate data: some examples

- Ecology: Species, Sites, Abundance
- Psychometry: Questions, Individuals, Score
- Genetics: SNPs, Individuals, Allele presence

Association between individuals? Correlations between variables?
Multivariate analysis to summarize diversity

- **Ecology**
 - Species
 - Sites
 - Abundance

- **Psychometry**
 - Questions
 - Individuals
 - Score

- **Genetics**
 - SNPs
 - Individuals
 - Allele presence
Multivariate analysis to summarize diversity

Species assemblage #1

Species assemblage #2
Multivariate analysis to summarize diversity
Multivariate analysis to summarize diversity

- Ecology
 - Species
 - Abundance

- Psychometry
 - Questions
 - Score

- Genetics
 - SNPs
 - Allele presence

Species assemblage #1
Species assemblage #2
"Intelligence"
Creativity
Two populations
Resistant/susceptible strains

Multivariate analysis in a nutshell
Applications to genetic data
Genetic diversity of pathogen populations
Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations

Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- “dimension reduction techniques”
- “ordinations in reduced space”
- “factorial methods”

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables
Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations

Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- “dimension reduction techniques”
- “ordinations in reduced space”
- “factorial methods”

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables
Most common methods

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: *Multiple Correspondance Analysis* (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Many other methods for ≥ 2 data tables, spatial analysis, phylogenetic analysis, etc.
Most common methods

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: *Multiple Correspondance Analysis* (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Many other methods for ≥ 2 data tables, spatial analysis, phylogenetic analysis, etc.
Most common methods

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: *Multiple Correspondance Analysis* (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Many other methods for ≥ 2 data tables, spatial analysis, phylogenetic analysis, etc.
Most common methods

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: *Multiple Correspondance Analysis* (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Many other methods for ≥ 2 data tables, spatial analysis, phylogenetic analysis, etc.
Most common methods

Differences lie in input data:

- quantitative/binary variables: Principal Component Analysis (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)

Many other methods for ≥ 2 data tables, spatial analysis, phylogenetic analysis, etc.
1 dimension, 2 dimensions, P dimensions

Need to find most informative directions in a P-dimensional space.
1 dimension, 2 dimensions, P dimensions

Need to find most informative directions in a P-dimensional space.
1 dimension, 2 dimensions, P dimensions

Need to find most informative directions in a P-dimensional space.
Reducing P dimensions into 1

- $X \in \mathbb{R}^{N \times P}$; $X = [x_1 | \ldots | x_P]$: data matrix
- $Q \in \mathbb{R}^{P \times P}$ metric in \mathbb{R}^P; $D \in \mathbb{R}^{N \times N}$ metric in \mathbb{R}^N
- $u \in \mathbb{R}^P$; $u = [u_1, \ldots, u_P]$: principal axis ($\|u\|_Q^2 = 1$)
- $v \in \mathbb{R}^N$; $v = XQu$: principal component

\rightarrow find u so that $\|v\|_D^2$ is maximum.
Reducing P dimensions into 1

- $X \in \mathbb{R}^{N \times P}; X = [x_1 | \ldots | x_P]$: data matrix
- $Q \in \mathbb{R}^{P \times P}$ metric in \mathbb{R}^P; $D \in \mathbb{R}^{N \times N}$ metric in \mathbb{R}^N
- $u \in \mathbb{R}^P; u = [u_1, \ldots, u_P]$: principal axis ($\|u\|_Q^2 = 1$)
- $v \in \mathbb{R}^N; v = XQu$: principal component

\rightarrow find u so that $\|v\|_D^2$ is maximum.
Reducing P dimensions into 1

- $X \in \mathbb{R}^{N \times P}$; $X = [x_1 | \ldots | x_P]$: data matrix
- $Q \in \mathbb{R}^{P \times P}$ metric in \mathbb{R}^P; $D \in \mathbb{R}^{N \times N}$ metric in \mathbb{R}^N
- $u \in \mathbb{R}^P$; $u = [u_1, \ldots, u_P]$: principal axis ($\|u\|_Q^2 = 1$)
- $v \in \mathbb{R}^N$; $v = XQu$: principal component

→ find u so that $\|v\|_D^2$ is maximum.
Reducing P dimensions into 1

- $X \in \mathbb{R}^{N \times P}$; $X = [x_1 | \ldots | x_P]$: data matrix
- $Q \in \mathbb{R}^{P \times P}$ metric in \mathbb{R}^P; $D \in \mathbb{R}^{N \times N}$ metric in \mathbb{R}^N
- $u \in \mathbb{R}^P$; $u = [u_1, \ldots, u_P]$: principal axis ($\|u\|_Q^2 = 1$)
- $v \in \mathbb{R}^N$; $v = XQu$: principal component

→ find u so that $\|v\|_D^2$ is maximum.
Keeping more than one principal component

- \mathbf{u}_1 and \mathbf{v}_1: 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2: 2nd principal axis and component

→ constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ (i.e., $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_Q = 0$)
→ find \mathbf{u}_2 so that $\|\mathbf{v}_2\|_D^2$ is maximum
Keeping more than one principal component

- \(u_1 \) and \(v_1 \): 1st principal axis and component
- \(u_2 \) and \(v_2 \): 2nd principal axis and component

\[\langle u_1, u_2 \rangle_Q = 0 \]

\[\| v_2 \|_D^2 \text{ is maximum} \]
Keeping more than one principal component

- u_1 and v_1: 1st principal axis and component
- u_2 and v_2: 2nd principal axis and component

→ constraint: $u_1 \perp u_2$ (i.e., $\langle u_1, u_2 \rangle_Q = 0$)
→ find u_2 so that $\| v_2 \|_D^2$ is maximum
Keeping more than one principal component

- \mathbf{u}_1 and \mathbf{v}_1: 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2: 2nd principal axis and component

→ constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ (i.e., $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_Q = 0$)
→ find \mathbf{u}_2 so that $\|\mathbf{v}_2\|_D^2$ is maximum
How do we do this?

Things that don’t change:

- take u_i the i-th eigenvector of the Q-symmetric matrix X^TDXQ
- (alternatively) take v_i the i-th eigenvector of the D-symmetric matrix XQX^TD

Things that change:

- pre-transformations of X (recoding, standardisation, etc.)
- metrics Q and D (implicitly distances in \mathbb{R}^P and \mathbb{R}^N)
- most usual analyses are defined by (X, Q, D)
How do we do this?

Things that don’t change:

- take u_i the i-th eigenvector of the Q-symmetric matrix X^TDXQ
- (alternatively) take v_i the i-th eigenvector of the D-symmetric matrix XQX^TD

Things that change:

- pre-transformations of X (recoding, standardisation, etc.)
- metrics Q and D (implicitly distances in \mathbb{R}^P and \mathbb{R}^N)
- most usual analyses are defined by (X, Q, D)
How do we do this?

Things that don’t change:

• take u_i the i-th eigenvector of the Q-symmetric matrix X^TDXQ
• (alternatively) take v_i the i-th eigenvector of the D-symmetric matrix XQX^TD

Things that change:

• pre-transformations of X (recoding, standardisation, etc.)
• metrics Q and D (implicitly distances in \mathbb{R}^P and \mathbb{R}^N)
• most usual analyses are defined by (X, Q, D)

\texttt{R} packages: ade4, vegan
How many principal components to retain?

Choice based on “screeplot”: barplot of eigenvalues

Retain only “significant” structures... but not trivial ones.
Outputs of multivariate analyses: an overview

Main outputs:

- **principal components**: diversity amongst individuals
- **principal axes**: nature of the structures
- **eigenvalues**: magnitude of structures
Outputs of multivariate analyses: an overview

Main outputs:

- **principal components**: diversity amongst individuals
- **principal axes**: nature of the structures
- **eigenvalues**: magnitude of structures
Outputs of multivariate analyses: an overview

Main outputs:

- **principal components**: diversity amongst individuals
- **principal axes**: nature of the structures
- **eigenvalues**: magnitude of structures
Usual summary of an analysis: the biplot

Biplot: principal components (points) + loadings (arrows)

- groups of individuals
- structuring variables (longest arrows)
- magnitude of the structures
Multivariate analysis in a nutshell

- **variety of methods** for different types of variables
- **principal components** (PCs) summarize diversity
- **variable loadings** identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...
Multivariate analysis in a nutshell

- **variety of methods** for different types of variables
- **principal components** (PCs) summarize diversity
- **variable loadings** identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...
Multivariate analysis in a nutshell

• **variety of methods** for different types of variables

• **principal components** (PCs) summarize diversity

• **variable loadings** identify discriminating variables

• other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...
Multivariate analysis in a nutshell

- **variety of methods** for different types of variables
- **principal components** (PCs) summarize diversity
- **variable loadings** identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...
Outline

Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations
From DNA sequences to patterns of biological diversity
From DNA sequences to patterns of biological diversity
From DNA sequences to patterns of biological diversity

...attgcagtaacc...

Reproduction (simplified)
From DNA sequences to patterns of biological diversity

Reproduction (simplified)

Mutation

...attgcagtaacc...

...attggagtaacc...
From DNA sequences to patterns of biological diversity

DNA sequences contain information about the spatio-temporal dynamics of biological populations
DNA sequences: a rich source of information

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies

⇒ Multivariate analysis use to summarize genetic diversity.
DNA sequences: a rich source of information

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies

⇒ Multivariate analysis use to summarize genetic diversity.
DNA sequences: a rich source of information

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies

⇒ Multivariate analysis use to summarize genetic diversity.
DNA sequences: a rich source of information

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies

\[\Rightarrow \text{Multivariate analysis use to summarize genetic diversity.} \]
First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, *Proc B*)

First 2 principal components separate populations into continents.
First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)

First 2 principal components separate populations into continents.
Applications: some examples

PCA of genetic data + colored maps of principal components

(Cavalli-Sforza et al. 1993, Science)

Signatures of Human expansion out-of-Africa.
Since then...

Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations

Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)
- ...

Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)
- ...

packages: adegenet, ade4, pegas
Since then...

Applications

• reveal spatial structures (historical spread)
• explore genetic diversity
• identify cryptic species
• discover genotype-phenotype association
• ...

Applications in genetics of pathogen populations.
Since then...

Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...

Applications in genetics of pathogen populations.
Outline

Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations
Why investigate the diversity of pathogen populations?

Genetic data: increasingly important in infectious disease epidemiology

Purposes

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)
Why investigate the diversity of pathogen populations?

Genetic data: increasingly important in infectious disease epidemiology

Purposes

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)
Why investigate the diversity of pathogen populations?

Genetic data: increasingly important in infectious disease epidemiology

Purposes

• classify pathogens, describe their relationships
• assess the spatio-temporal dynamics of infectious diseases
• reconstruct epidemiological processes (transmission)
Why investigate the diversity of pathogen populations?

Genetic data: increasingly important in infectious disease epidemiology

Purposes

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)
Different questions at different scales

Where and how can multivariate analysis of pathogen genetic data be useful?
Where and how can multivariate analysis of pathogen genetic data be useful?
Describing pathogen populations

Population genetics: identify populations of organisms and describe their relationships

What is a population?

- *Usual definition:* set of organisms mating at random
- *Problem:* no “mating” in most pathogens (e.g. viruses, bacteria)
- *Genetic clusters:* set of genetically related pathogens (e.g. same outbreak, same epidemic).

⇒ aim: identify and describe genetic clusters
Describing pathogen populations

Population genetics: identify populations of organisms and describe their relationships

What is a population?

- *Usual definition*: set of organisms mating at random
- *Problem*: no “mating” in most pathogens (e.g. viruses, bacteria)
- *Genetic clusters*: set of genetically related pathogens (e.g. same outbreak, same epidemic).

⇒ aim: identify and describe genetic clusters
Describing pathogen populations

Population genetics: identify populations of organisms and describe their relationships

What is a population?

- *Usual definition:* set of organisms mating at random
- *Problem:* no “mating” in most pathogens (e.g. viruses, bacteria)
- *Genetic clusters:* set of genetically related pathogens (e.g. same outbreak, same epidemic).

⇒ aim: **identify** and **describe** genetic clusters
Describing pathogen populations

Population genetics: identify populations of organisms and describe their relationships

What is a population?

- *Usual definition*: set of organisms mating at random
- *Problem*: no “mating” in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).

⇒ aim: **identify and describe** genetic clusters
Describing pathogen populations

Population genetics: identify populations of organisms and describe their relationships

What is a population?

- *Usual definition*: set of organisms mating at random
- *Problem*: no “mating” in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).

⇒ aim: identify and describe genetic clusters
Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Variance partitioning model (ANOVA):

\[\text{tot. variance} = (\text{bet. groups}) + (\text{wit. groups}) \]

Performances:

- K-means \(\geq \) STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)
Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Variance partitioning model (ANOVA):

\[
\text{tot. variance} = (\text{bet. groups}) + (\text{wit. groups})
\]

Performances:

- K-means \(\geq \) STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)
Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Variance partitioning model (ANOVA):
\[\text{tot. variance} = (\text{bet. groups}) + (\text{wit. groups}) \]

Performances:
- K-means \(\geq \) STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

\(\text{R} \) package: adegenet, function find.clusters
PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.

Little temporal evolution, burst of diversity in 2002??
PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.

Little temporal evolution, burst of diversity in 2002??
Which diversity to represent?

Total diversity not relevant to analyse clusters.

Discriminant Analysis of Principal Components (DAPC):
(Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA
Which diversity to represent?

Total diversity not relevant to analyse clusters.

Discriminant Analysis of Principal Components (DAPC):
(Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination (“between/within” ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA
Which diversity to represent?

Total diversity not relevant to analyse clusters.

Discriminant Analysis of Principal Components (DAPC):
(Jombart et al. 2010, *BMC Genetics*)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA

R package: *adegenet*, function `dapc`
DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).
DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).
Identifying antigenic clusters in influenza (A/H3N2)

Antigenic clusters identified directly from AA sequences.

(Smith et al., 2004, Science)

(Aguas & Ferguson, in prep)
Contact: r.aguas@imperial.ac.uk
Identifying antigenic clusters in influenza (A/H3N2)

Antigenic clusters identified directly from AA sequences.

(Agua & Ferguson, in prep)
Contact: r.aguas@imperial.ac.uk
DAPC to identify structuring alleles

DAPC finds combinations of alleles most differing between groups.

Simulated data:
(Jombart & Ahmed 2011, *Bioinformatics*)

- 2 clusters, 50 isolates each
- 1,000,000 non structured SNPs
- 1,000 structured SNPs (i.e. different frequencies between groups)

Possible applications to pathogen GWAS (e.g. SNPs related to antibiotic resistance in bacteria).
DAPC to identify structuring alleles

DAPC finds combinations of alleles most differing between groups.

Simulated data:
(Jombart & Ahmed 2011, *Bioinformatics*)

- 2 clusters, 50 isolates each
- 1,000,000 non structured SNPs
- 1,000 structured SNPs (i.e. different frequencies between groups)

Possible applications to pathogen GWAS (e.g. SNPs related to antibiotic resistance in bacteria).
Limits of multivariate analysis

Methicillin-resistant *Staphylococcus aureus* (MRSA) outbreak within hospital, Thailand. \(\sim 200\) full-genome sequences. \(\sim 1,000\) SNPs.

Observations:

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information
Limits of multivariate analysis

Methicillin-resistant *Staphylococcus aureus* (MRSA) outbreak within hospital, Thailand. \(\sim\) 200 full-genome sequences. \(\sim\) 1,000 SNPs.

Observations:

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information
Limits of multivariate analysis

Methicillin-resistant *Staphylococcus aureus* (MRSA) outbreak within hospital, Thailand. ~200 full-genome sequences. ~1,000 SNPs.

Observations:

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information
Limits of multivariate analysis

Methicillin-resistant *Staphylococcus aureus* (MRSA) outbreak within hospital, Thailand. ~ 200 full-genome sequences. ~ 1,000 SNPs.

Observations:
- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information
Methicillin-resistant *Staphylococcus aureus* (MRSA) outbreak within hospital, Thailand. \(\sim \) 200 full-genome sequences. \(\sim \) 1,000 SNPs.

Observations:
- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Multivariate analysis usually not informative on small-scale processes.
Summary

• multivariate analysis used for \(\sim 50\) years in genetics, still an active field for methodological development

• increasingly useful as datasets grow

• specific applications to pathogen genetic data

• limits reached when reconstructing fine-scale processes

• more at: http://adegenet.r-forge.r-project.org/
Summary

- multivariate analysis used for \(\sim 50 \) years in genetics, still an active field for methodological development

- increasingly useful as datasets grow

- specific applications to pathogen genetic data

- limits reached when reconstructing fine-scale processes

- more at: http://adegenet.r-forge.r-project.org/
Summary

- multivariate analysis used for \(~ 50\) years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific applications to pathogen genetic data
- limits reached when reconstructing fine-scale processes
- more at: http://adegenet.r-forge.r-project.org/
Summary

- multivariate analysis used for ~ 50 years in genetics, still an active field for methodological development

- increasingly useful as datasets grow

- specific applications to pathogen genetic data

- limits reached when reconstructing fine-scale processes

- more at: http://adegenet.r-forge.r-project.org/
Summary

• multivariate analysis used for \sim 50 years in genetics, still an active field for methodological development

• increasingly useful as datasets grow

• specific applications to pathogen genetic data

• limits reached when reconstructing fine-scale processes

• more at: http://adegenet.r-forge.r-project.org/