



# Multivariate analysis of genetic data: an introduction

Thibaut Jombart

MRC Centre for Outbreak Analysis and Modelling Imperial College London

XXIV Simposio Internacional De Estadística Bogotá, 25th July 2014 Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations



#### Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations

Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations

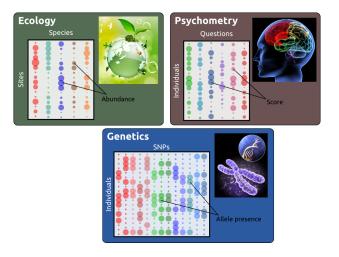


#### Multivariate analysis in a nutshell

Applications to genetic data

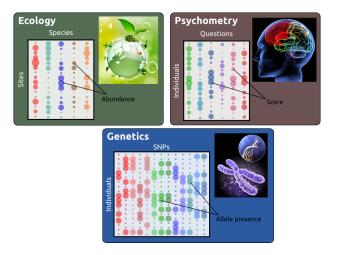
Genetic diversity of pathogen populations

### Multivariate data: some examples



Association between individuals? Correlations between variables?

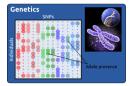
### Multivariate data: some examples



Association between individuals? Correlations between variables?







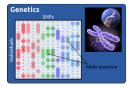




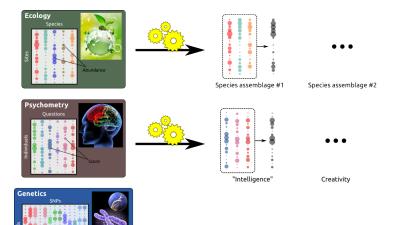


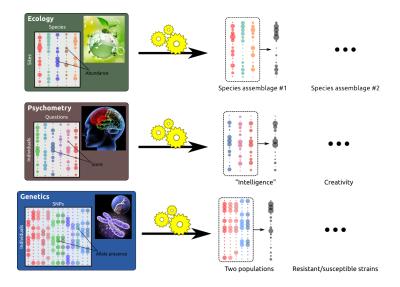






Species assemblage #2





### Multivariate analysis: an overview

#### Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

### Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

### Multivariate analysis: an overview

#### Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

### Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

### Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

### Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

#### Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

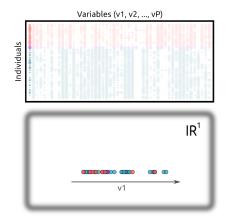
#### Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

#### Differences lie in input data:

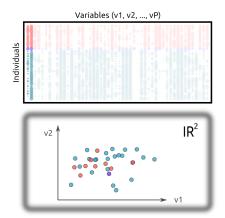
- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

# 1 dimension, 2 dimensions, P dimensions



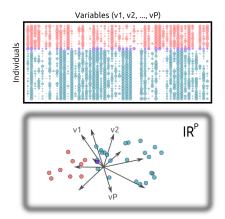
Need to find most informative directions in a P-dimensional space.

# 1 dimension, 2 dimensions, P dimensions

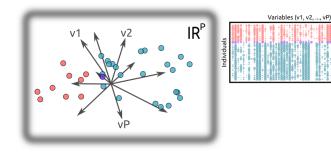


Need to find most informative directions in a *P*-dimensional space.

## 1 dimension, 2 dimensions, P dimensions

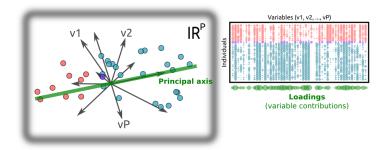


Need to find most informative directions in a *P*-dimensional space.



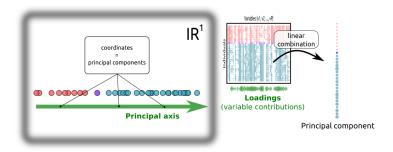
- $\mathbf{X} \in \mathbb{R}^{N imes P}$ ;  $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$ : data matrix
- $\mathbf{Q} \in \mathbb{R}^{P \times P}$  metric in  $\mathbb{R}^P$  ;  $\mathbf{D} \in \mathbb{R}^{N \times N}$  metric in  $\mathbb{R}^N$
- $\mathbf{u} \in \mathbb{R}^{P}$ ;  $\mathbf{u} = [u_1, \dots, u_P]$ : principal axis ( $\|\mathbf{u}\|_{\mathbf{Q}}^2 = 1$ )
- $\mathbf{v} \in \mathbb{R}^N$ ;  $\mathbf{v} = \mathbf{X}\mathbf{Q}\mathbf{u}$ : principal component

 $\rightarrow$  find  ${\bf u}$  so that  $\|{\bf v}\|_{{\bf D}}^2$  is maximum.



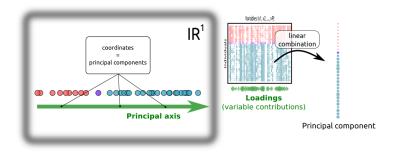
- $\mathbf{X} \in \mathbb{R}^{N imes P}$ ;  $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$ : data matrix
- $\mathbf{Q} \in \mathbb{R}^{P \times P}$  metric in  $\mathbb{R}^P$  ;  $\mathbf{D} \in \mathbb{R}^{N \times N}$  metric in  $\mathbb{R}^N$
- $\mathbf{u} \in \mathbb{R}^{P}$ ;  $\mathbf{u} = [u_1, \dots, u_P]$ : principal axis ( $\|\mathbf{u}\|_{\mathbf{Q}}^2 = 1$ )
- $\mathbf{v} \in \mathbb{R}^N$ ;  $\mathbf{v} = \mathbf{X}\mathbf{Q}\mathbf{u}$ : principal component

 $\rightarrow$  find **u** so that  $\|\mathbf{v}\|_{\mathbf{D}}^2$  is maximum.



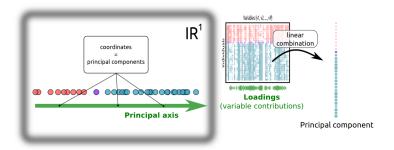
- $\mathbf{X} \in \mathbb{R}^{N imes P}$ ;  $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$ : data matrix
- $\mathbf{Q} \in \mathbb{R}^{P \times P}$  metric in  $\mathbb{R}^P$  ;  $\mathbf{D} \in \mathbb{R}^{N \times N}$  metric in  $\mathbb{R}^N$
- $\mathbf{u} \in \mathbb{R}^{P}$ ;  $\mathbf{u} = [u_1, \dots, u_P]$ : principal axis ( $\|\mathbf{u}\|_{\mathbf{Q}}^2 = 1$ )
- $\mathbf{v} \in \mathbb{R}^N$ ;  $\mathbf{v} = \mathbf{X}\mathbf{Q}\mathbf{u}$ : principal component

 $\rightarrow$  find **u** so that  $\|\mathbf{v}\|_{\mathbf{D}}^2$  is maximum.

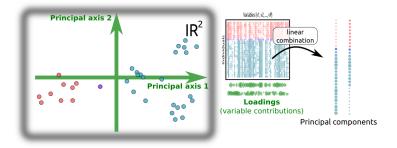


- $\mathbf{X} \in \mathbb{R}^{N imes P}$ ;  $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$ : data matrix
- $\mathbf{Q} \in \mathbb{R}^{P \times P}$  metric in  $\mathbb{R}^P$  ;  $\mathbf{D} \in \mathbb{R}^{N \times N}$  metric in  $\mathbb{R}^N$
- $\mathbf{u} \in \mathbb{R}^{P}$ ;  $\mathbf{u} = [u_1, \dots, u_P]$ : principal axis ( $\|\mathbf{u}\|_{\mathbf{Q}}^2 = 1$ )
- $\mathbf{v} \in \mathbb{R}^N$ ;  $\mathbf{v} = \mathbf{X}\mathbf{Q}\mathbf{u}$ : principal component

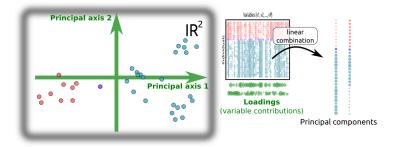
 $\rightarrow$  find  $\mathbf{u}$  so that  $\|\mathbf{v}\|_{\mathbf{D}}^2$  is maximum.



- $\mathbf{u}_1$  and  $\mathbf{v}_1:$  1st principal axis and component
- u<sub>2</sub> and v<sub>2</sub>: 2nd principal axis and component
- $\rightarrow$  constraint:  $\mathbf{u}_1 \perp \mathbf{u}_2$  (i.e.,  $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathbf{Q}} = 0$ )  $\rightarrow$  find  $\mathbf{u}_2$  so that  $\|\mathbf{v}_2\|_{\mathbf{D}}^2$  is maximum

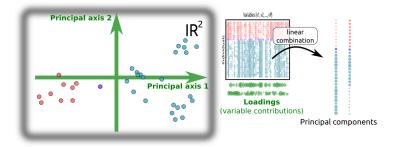


- $\mathbf{u}_1$  and  $\mathbf{v}_1$ : 1st principal axis and component
- $\mathbf{u}_2$  and  $\mathbf{v}_2$ : 2nd principal axis and component
- $\begin{array}{l} \rightarrow \text{ constraint: } \mathbf{u}_1 \perp \mathbf{u}_2 \text{ (i.e., } \langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathbf{Q}} = 0 \text{)} \\ \rightarrow \text{ find } \mathbf{u}_2 \text{ so that } \|\mathbf{v}_2\|_{\mathbf{D}}^2 \text{ is maximum} \end{array}$



- $\mathbf{u}_1$  and  $\mathbf{v}_1:$  1st principal axis and component
- $\mathbf{u}_2$  and  $\mathbf{v}_2$ : 2nd principal axis and component

$$ightarrow$$
 constraint:  $\mathbf{u}_1 \perp \mathbf{u}_2$  (i.e.,  $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathbf{Q}} = 0$ )  
 $ightarrow$  find  $\mathbf{u}_2$  so that  $\|\mathbf{v}_2\|_{\mathbf{D}}^2$  is maximum



- $\mathbf{u}_1$  and  $\mathbf{v}_1$ : 1st principal axis and component
- $\mathbf{u}_2$  and  $\mathbf{v}_2$ : 2nd principal axis and component

$$\rightarrow$$
 constraint:  $\mathbf{u}_1 \perp \mathbf{u}_2$  (i.e.,  $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathbf{Q}} = 0$ )

## How do we do this?

### Things that don't change:

- take  $\mathbf{u}_i$  the *i*-th eigenvector of the Q-symmetric matrix  $\mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{Q}$
- (alternatively) take  $\mathbf{v}_i$  the *i*-th eigenvector of the **D**-symmetric matrix  $\mathbf{XQX}^T\mathbf{D}$

### Things that change:

- pre-transformations of  $\mathbf{X}$  (recoding, standardisation, etc.)
- metrics  ${f Q}$  and  ${f D}$  (implicitely distances in  ${\Bbb R}^P$  and  ${\Bbb R}^N$ )
- most usual analyses are defined by  $(\mathbf{X},\mathbf{Q},\mathbf{D})$

## How do we do this?

### Things that don't change:

- take  $\mathbf{u}_i$  the *i*-th eigenvector of the Q-symmetric matrix  $\mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{Q}$
- (alternatively) take  $\mathbf{v}_i$  the *i*-th eigenvector of the **D**-symmetric matrix  $\mathbf{XQX}^T\mathbf{D}$

### Things that change:

- pre-transformations of  $\mathbf{X}$  (recoding, standardisation, etc.)
- metrics  $\mathbf{Q}$  and  $\mathbf{D}$  (implicitely distances in  $\mathbb{R}^P$  and  $\mathbb{R}^N$ )
- most usual analyses are defined by  $(\mathbf{X},\mathbf{Q},\mathbf{D})$

# How do we do this?

### Things that don't change:

- take  $\mathbf{u}_i$  the *i*-th eigenvector of the  $\mathbf{Q}$ -symmetric matrix  $\mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{Q}$
- (alternatively) take  $\mathbf{v}_i$  the *i*-th eigenvector of the **D**-symmetric matrix  $\mathbf{XQX}^T\mathbf{D}$

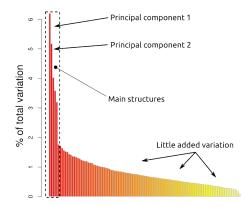
### Things that change:

- pre-transformations of  $\mathbf{X}$  (recoding, standardisation, etc.)
- metrics  $\mathbf{Q}$  and  $\mathbf{D}$  (implicitely distances in  $\mathbb{R}^P$  and  $\mathbb{R}^N$ )
- most usual analyses are defined by  $(\mathbf{X},\mathbf{Q},\mathbf{D})$

😨 packages: ade4, vegan

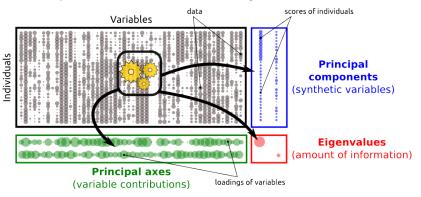
# How many principal components to retain?

#### Choice based on "screeplot": barplot of eigenvalues



Retain only "significant" structures... but not trivial ones.

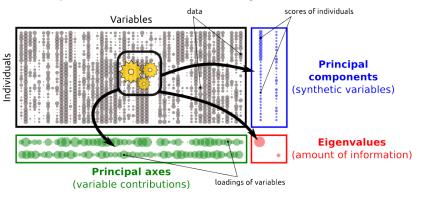
### Outputs of multivariate analyses: an overview



### Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

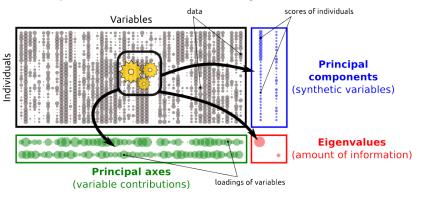
### Outputs of multivariate analyses: an overview



### Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

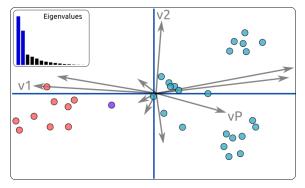
### Outputs of multivariate analyses: an overview



### Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

# Usual summary of an analysis: the biplot



### Biplot: principal components (points) + loadings (arrows)

- groups of individuals
- structuring variables (longest arrows)
- magnitude of the structures

### Multivariate analysis in a nutshell

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

Applications to genetic data

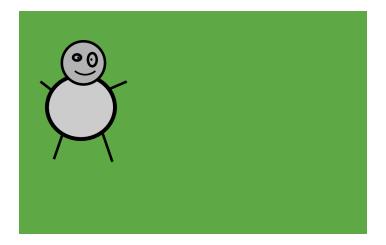
Genetic diversity of pathogen populations

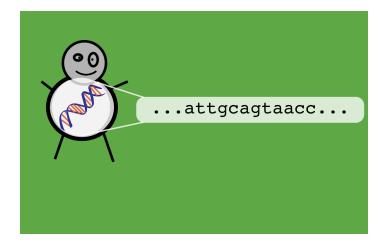


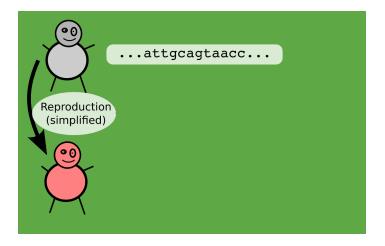
#### Multivariate analysis in a nutshell

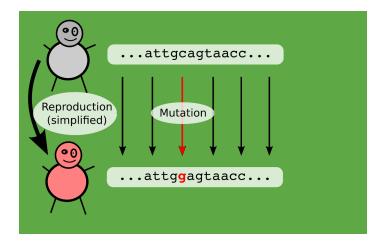
Applications to genetic data

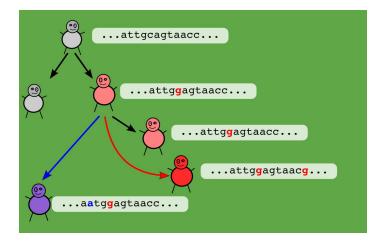
Genetic diversity of pathogen populations

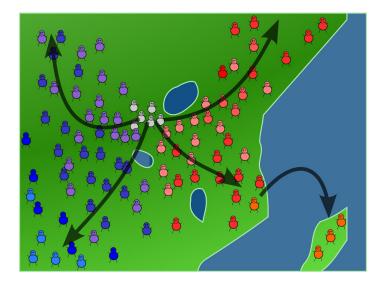


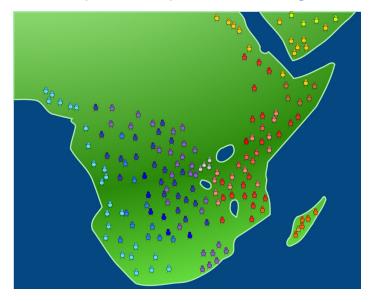






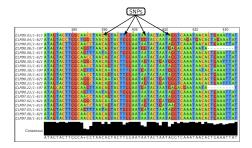




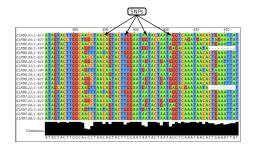




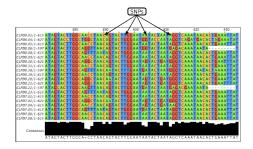
DNA sequences contain information about the spatio-temporal dynamics of biological populations



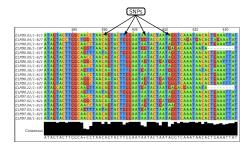
- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies
- $\Rightarrow$  Multivariate analysis use to summarize genetic diversity.



- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies
- $\Rightarrow$  Multivariate analysis use to summarize genetic diversity.



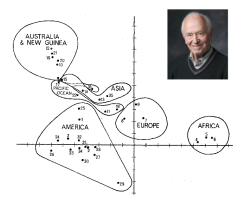
- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies
- $\Rightarrow$  Multivariate analysis use to summarize genetic diversity.



- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- more generally, most genetic data can be treated as frequencies
- $\Rightarrow$  Multivariate analysis use to summarize genetic diversity.

## First application of multivariate analysis in genetics

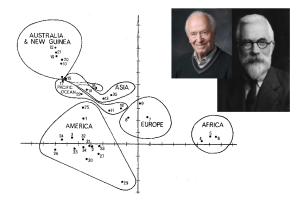
PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)



First 2 principal components separate populations into continents.

## First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)



First 2 principal components separate populations into continents.

## Applications: some examples

#### PCA of genetic data + colored maps of principal components

(Cavalli-Sforza et al. 1993, Science)



Signatures of Human expansion out-of-Africa.

Genetic diversity of pathogen populations

## Since then...

#### Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)
- ...

Genetic diversity of pathogen populations

## Since then...

#### Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)

• ...

R packages: *adegenet*, *ade4*, *pegas* 

Genetic diversity of pathogen populations

## Since then...

#### Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...
- review in Jombart et al. 2009, Heredity 102: 330-341

Applications in genetics of pathogen populations.

Genetic diversity of pathogen populations

## Since then...

#### Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...
- review in Jombart et al. 2009, Heredity 102: 330-341

#### Applications in genetics of pathogen populations.

Applications to genetic data

Genetic diversity of pathogen populations



Multivariate analysis in a nutshell

Applications to genetic data

Genetic diversity of pathogen populations

Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)



Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)



Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)

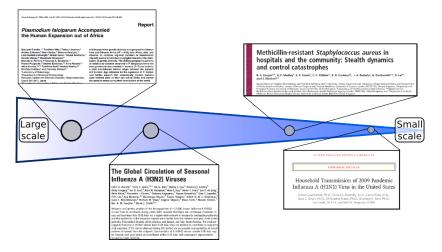


Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)

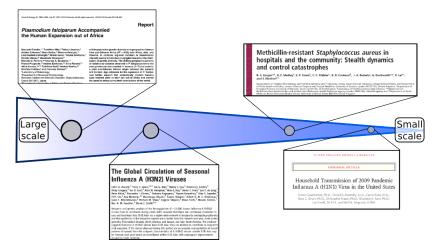


## Different questions at different scales



Where and how can multivariate analysis of pathogen genetic data be useful?

## Different questions at different scales



Where and how can multivariate analysis of pathogen genetic data be useful?

# **Population genetics**: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- $\Rightarrow$  aim: identify and describe genetic clusters

**Population genetics**: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- $\Rightarrow$  aim: identify and describe genetic clusters

**Population genetics**: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- $\Rightarrow$  aim: identify and describe genetic clusters

**Population genetics**: identify populations of organisms and describe their relationships

What is a population?

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).

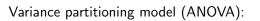
 $\Rightarrow$  aim: identify and describe genetic clusters

**Population genetics**: identify populations of organisms and describe their relationships

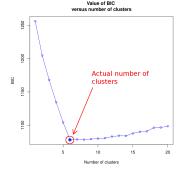
- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- $\Rightarrow$  aim: identify and describe genetic clusters

### Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)



tot. variance = (bet. groups) + (wit. groups)



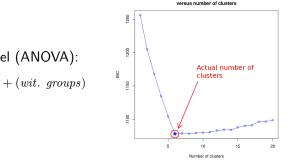
### Performances:

- K-means ≥ STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

Value of BIC

### Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)



### Variance partitioning model (ANOVA):

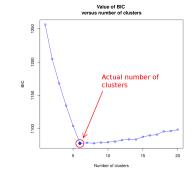
 $tot. \ variance = (bet. \ groups) + (wit. \ groups)$ 

### Performances:

- K-means ≥ STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

# Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)



### Variance partitioning model (ANOVA):

 $tot. \ variance = (bet. \ groups) + (wit. \ groups)$ 

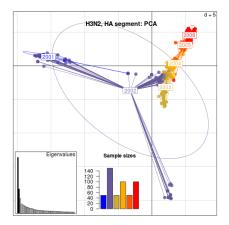
### Performances:

- K-means ≥ STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

Package: adegenet, function find.clusters

# PCA of seasonal influenza (A/H3N2) data

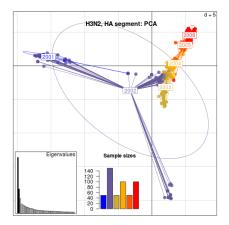
#### Data: seasonal influenza (A/H3N2), 500 HA segments.



Little temporal evolution, burst of diversity in 2002??

# PCA of seasonal influenza (A/H3N2) data

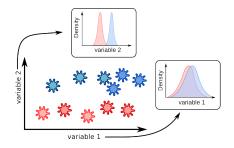
#### Data: seasonal influenza (A/H3N2), 500 HA segments.



Little temporal evolution, burst of diversity in 2002??

## Which diversity to represent?

Total diversity not relevant to analyse clusters.

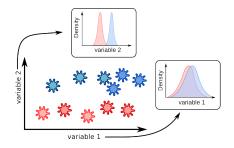


Discriminant Analysis of Principal Components (DAPC): (Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA

## Which diversity to represent?

Total diversity not relevant to analyse clusters.

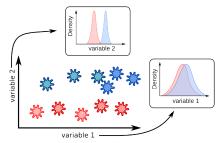


Discriminant Analysis of Principal Components (DAPC): (Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA

## Which diversity to represent?

Total diversity not relevant to analyse clusters.

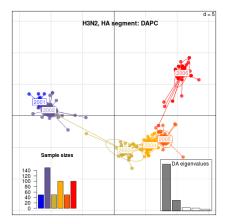


Discriminant Analysis of Principal Components (DAPC): (Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA

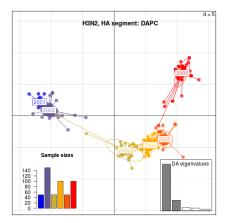
package: *adegenet*, function dapc

# DAPC of seasonal influenza (A/H3N2) data



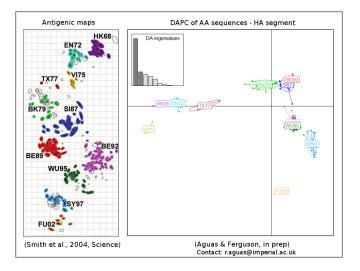
Strong temporal signal, originality of 2006 isolates (new alleles).

# DAPC of seasonal influenza (A/H3N2) data



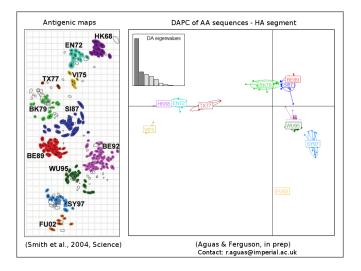
Strong temporal signal, originality of 2006 isolates (new alleles).

# Identifying antigenic clusters in influenza (A/H3N2)



Antigenic clusters identified directly from AA sequences.

# Identifying antigenic clusters in influenza (A/H3N2)



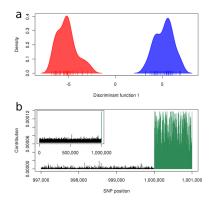
Antigenic clusters identified directly from AA sequences.

# DAPC to identify structuring alleles

#### DAPC finds combinations of alleles most differing between groups.

Simulated data: (Jombart & Ahmed 2011, *Bioinformatics*)

- 2 clusters, 50 isolates each
- 1,000,000 non structured SNPs
- 1,000 structured SNPs (i.e. different frequencies between groups)



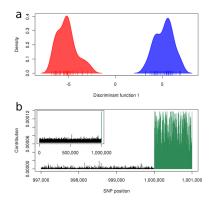
Possible applications to pathogen GWAS (e.g. SNPs related to antibiotic resistance in bacteria).

# DAPC to identify structuring alleles

#### DAPC finds combinations of alleles most differing between groups.

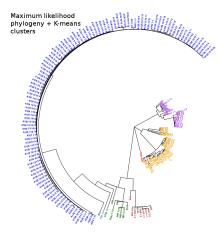
Simulated data: (Jombart & Ahmed 2011, *Bioinformatics*)

- 2 clusters, 50 isolates each
- 1,000,000 non structured SNPs
- 1,000 structured SNPs (i.e. different frequencies between groups)



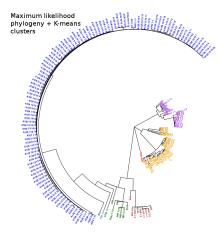
Possible applications to pathogen GWAS (e.g. SNPs related to antibiotic resistance in bacteria).

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand.  $\sim 200$  full-genome sequences.  $\sim 1,000$  SNPs.



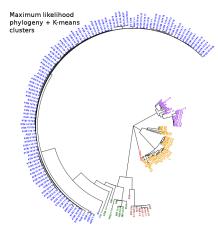
- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand.  $\sim 200$  full-genome sequences.  $\sim 1,000$  SNPs.



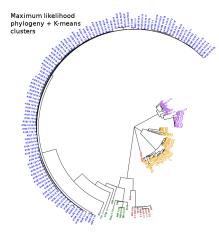
- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand.  $\sim 200$  full-genome sequences.  $\sim 1,000$  SNPs.



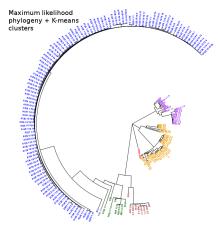
- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand.  $\sim 200$  full-genome sequences.  $\sim 1,000$  SNPs.



- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand.  $\sim 200$  full-genome sequences.  $\sim 1,000$  SNPs.



#### Observations:

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Multivariate analysis usually not informative on small-scale processes.

- multivariate analysis used for  $\sim 50$  years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific applications to pathogen genetic data
- limits reached when reconstructing fine-scale processes
- more at: http://adegenet.r-forge.r-project.org/



- multivariate analysis used for  $\sim 50$  years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific applications to pathogen genetic data
- limits reached when reconstructing fine-scale processes
- more at: http://adegenet.r-forge.r-project.org/

- multivariate analysis used for  $\sim 50$  years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific applications to pathogen genetic data
- limits reached when reconstructing fine-scale processes
- more at: http://adegenet.r-forge.r-project.org/

- multivariate analysis used for  $\sim 50$  years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific applications to pathogen genetic data
- limits reached when reconstructing fine-scale processes
- more at: http://adegenet.r-forge.r-project.org/

- multivariate analysis used for  $\sim 50$  years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific applications to pathogen genetic data
- limits reached when reconstructing fine-scale processes
- more at: http://adegenet.r-forge.r-project.org/