Multivariate analysis of genetic data — an introduction —

Thibaut Jombart (t.jombart@imperial.ac.uk)

MRC Centre for Outbreak Analysis and Modelling Imperial College London

Workshop *Phylogenetics and population genetics with* 26-03-2014

Outline

Multivariate analysis in a nutshell

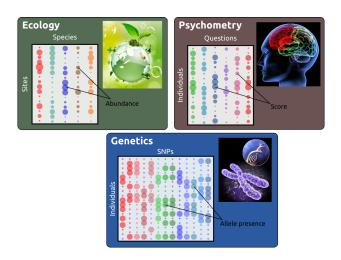
Applications to genetic data

Outline

Multivariate analysis in a nutshell

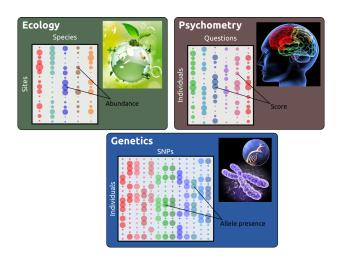
Applications to genetic data

Multivariate data: some examples

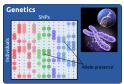


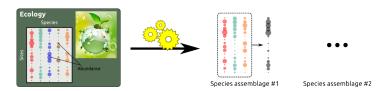
Association between individuals? Correlations between variables?

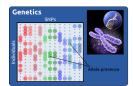
Multivariate data: some examples

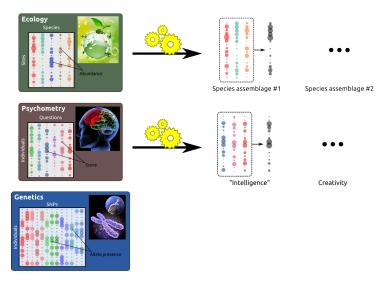


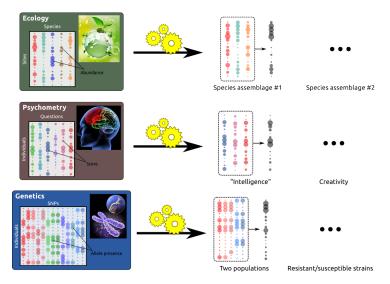
Association between individuals? Correlations between variables?











Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

Differences lie in input data:

- quantitative/binary variables: Principal Component Analysis (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)

Differences lie in input data:

- quantitative/binary variables: Principal Component Analysis (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)

Differences lie in input data:

- quantitative/binary variables: Principal Component Analysis (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)

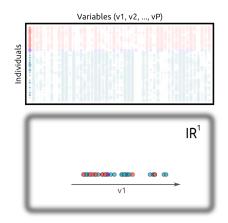
Differences lie in input data:

- quantitative/binary variables: Principal Component Analysis (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)

Differences lie in input data:

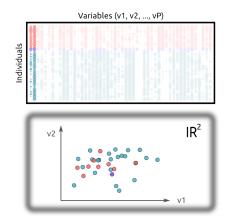
- quantitative/binary variables: Principal Component Analysis (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)

1 dimension, 2 dimensions, P dimensions



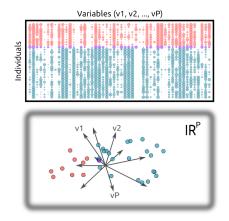
Need to find most informative directions in a P-dimensional space.

1 dimension, 2 dimensions, P dimensions

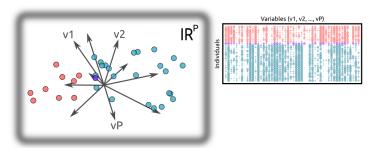


Need to find most informative directions in a P-dimensional space.

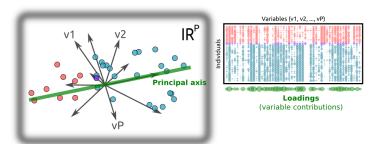
1 dimension, 2 dimensions, P dimensions



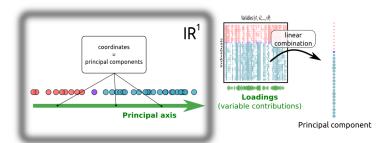
Need to find most informative directions in a *P*-dimensional space.



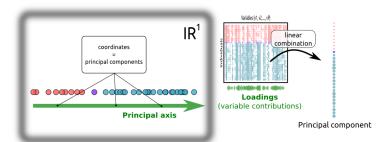
- $\mathbf{X} \in \mathbb{R}^{N \times P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^P$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^P u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component
- \rightarrow find \mathbf{u} so that $\frac{1}{N} \|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.



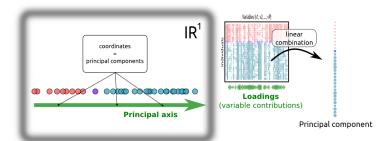
- $\mathbf{X} \in \mathbb{R}^{N \times P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^P$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^P u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component
- \rightarrow find \mathbf{u} so that $\frac{1}{N} \|\mathbf{v}\|^2 = \text{var}(\mathbf{v})$ is maximum.



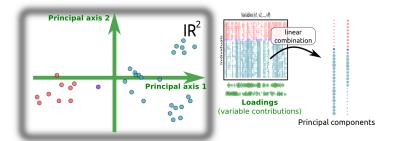
- $\mathbf{X} \in \mathbb{R}^{N \times P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^P$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^P u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component
- \rightarrow find u so that $\frac{1}{N}\|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.



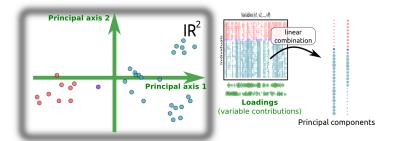
- $\mathbf{X} \in \mathbb{R}^{N \times P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^P$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^P u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component
- \rightarrow find \mathbf{u} so that $\frac{1}{N} \|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.



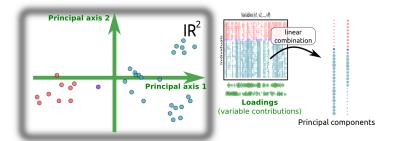
- \mathbf{u}_1 and \mathbf{v}_1 : 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2 \ (\iff \mathsf{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0)$
- \rightarrow find \mathbf{u}_2 so that $\frac{1}{N}\|\mathbf{v}_2\|^2 = \mathsf{var}(\mathbf{v}_2)$ is maximum



- u_1 and v_1 : 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2 \ (\iff \operatorname{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0)$
- \rightarrow find \mathbf{u}_2 so that $\frac{1}{N}\|\mathbf{v}_2\|^2 = \mathsf{var}(\mathbf{v}_2)$ is maximum



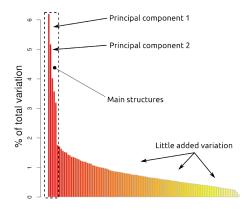
- u_1 and v_1 : 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2 \ (\iff \mathsf{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0)$
- \rightarrow find \mathbf{u}_2 so that $\frac{1}{N}\|\mathbf{v}_2\|^2 = \mathsf{var}(\mathbf{v}_2)$ is maximum



- u_1 and v_1 : 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2 \ (\iff \mathsf{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0)$
- \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} \|\mathbf{v}_2\|^2 = \mathsf{var}(\mathbf{v}_2)$ is maximum

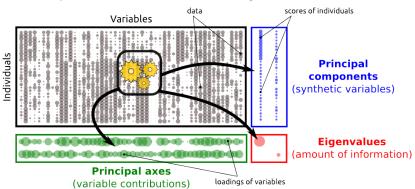
How many principal components to retain?

Choice based on "screeplot": barplot of eigenvalues



Retain only "significant" structures... but not trivial ones.

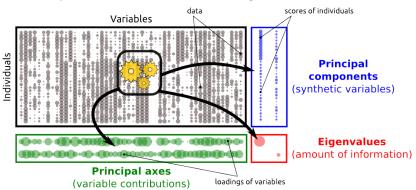
Outputs of multivariate analyses: an overview



Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

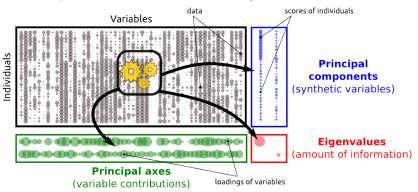
Outputs of multivariate analyses: an overview



Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

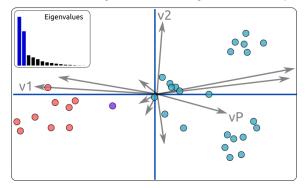
Outputs of multivariate analyses: an overview



Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

Usual summary of an analysis: the biplot



Biplot: principal components (points) + loadings (arrows)

- groups of individuals
- discriminating variables (longest arrows)
- magnitude of the structures

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: maps (spatial structures), models (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: maps (spatial structures), models (response variables or predictors), ...

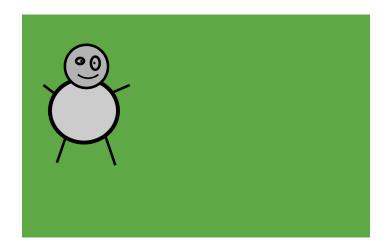
- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: maps (spatial structures), models (response variables or predictors), ...

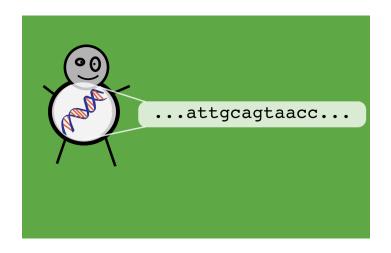
- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: maps (spatial structures), models (response variables or predictors), ...

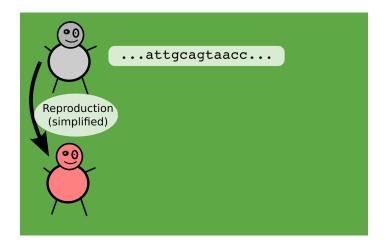
Outline

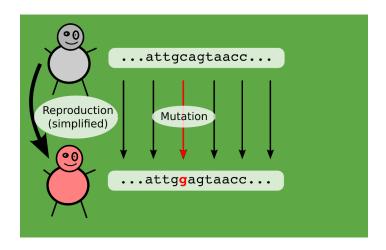
Multivariate analysis in a nutshell

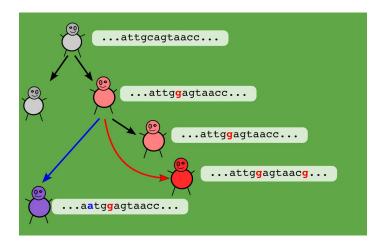
Applications to genetic data

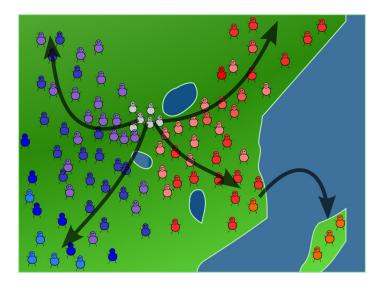


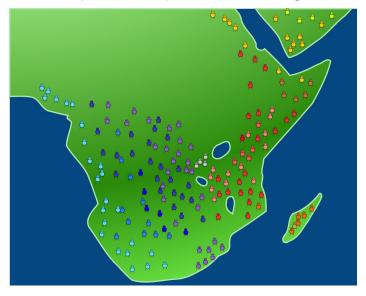




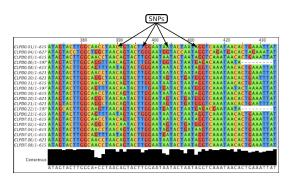




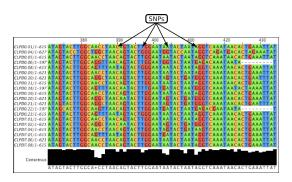




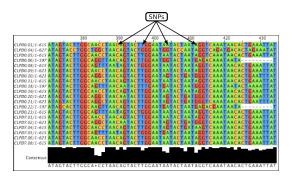
DNA sequences contain information about the spatio-temporal dynamics of biological populations



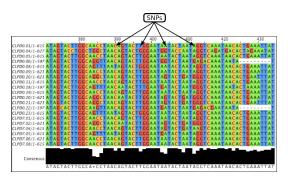
- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- ⇒ Multivariate analysis use to summarize genetic diversity.



- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- ⇒ Multivariate analysis use to summarize genetic diversity.



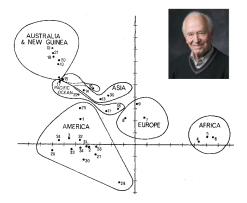
- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- ⇒ Multivariate analysis use to summarize genetic diversity.



- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- ⇒ Multivariate analysis use to summarize genetic diversity.

First application of multivariate analysis in genetics

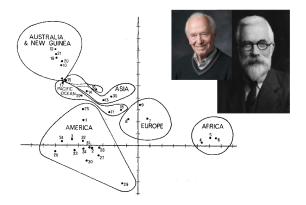
PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)



First 2 principal components separate populations into continents.

First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)



First 2 principal components separate populations into continents.

Applications: some examples

PCA of genetic data + colored maps of principal components

(Cavalli-Sforza et al. 1993, Science)

Signatures of Human expansion out-of-Africa.

Since then...

Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)
- ...

Since then...

Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...
- review in Jombart et al. 2009, Heredity 102: 330-341

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

Multivariate analysis of genetic data using

- 1. read data in (adegenet)
- 2. convert data into numeric values (adegenet)
- 3. replace missing values (adegenet)
- 4. use "classical" methods (ade4/adegenet)
- 5. graphics and interpretation (ade4/adegenet)

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as frequencies

Example using microsatellites:

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0.0	0.0	1.0	0.0	1.0
2	50/55	30/30	2	0.5	0.5	0.0	0.0	1.0
3	80/50	29/30	3	0.5	0.0	0.5	0.5	0.5
4	50/50	30/30	4	1.0	0.0	0.0	0.0	1.0
5	50/50	29/29	5	1.0	0.0	0.0	1.0	0.0

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as frequencies

Example using microsatellites:

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0.0	0.0	1.0	0.0	1.0
2	50/55	30/30	2	0.5	0.5	0.0	0.0	1.0
3	80/50	29/30	3	0.5	0.0	0.5	0.5	0.5
4	50/50	30/30	4	1.0	0.0	0.0	0.0	1.0
5	50/50	29/29	5	1.0	0.0	0.0	1.0	0.0

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as frequencies

Example using microsatellites:

	locus1	locus2	lo	cus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0.0	0.0	1.0	0.0	1.0
2	50/55	30/30	2	0.5	0.5	0.0	0.0	1.0
3	80/50	29/30	3	0.5	0.0	0.5	0.5	0.5
4	50/50	30/30	4	1.0	0.0	0.0	0.0	1.0
5	50/50	29/29	5	1.0	0.0	0.0	1.0	0.0

- Presence/absence (e.g. RFLP, AFLP) and SNPs: binary coding
- Multiallelic data (e.g. microsatellites) are recoded as frequencies

Example using microsatellites:

	locus1	locus2		locus1.50	locus1.55	locus1.80	locus2.29	locus2.30
1	80/80	30/30	1	0.0	0.0	1.0	0.0	1.0
2	50/55	30/30	2	0.5	0.5	0.0	0.0	1.0
3	80/50	29/30	3	0.5	0.0	0.5	0.5	0.5
4	50/50	30/30	4	1.0	0.0	0.0	0.0	1.0
5	50/50	29/29	5	1.0	0.0	0.0	1.0	0.0

Time to get your hands dirty!

The pdf of the practical is online:

http://adegenet.r-forge.r-project.org/ or

Google \rightarrow adegenet \rightarrow documents \rightarrow "Workshop Montpellier"