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Genetic data: introducing group data

markers

individua

alleles

e How to identify groups?

e How to explore group diversity?
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Hierarchical clustering: a variety of algorithms

single linkage

complete linkage
UPGMA
Ward
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Rationale

1. compute pairwise genetic distances D (or similarities)
group the closest pair(s) together
(optional) update D

return to 2) until no new group can be made
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Differences between algorithms

. e single linkage: Dy o = min(Dy 4, Dy, ;)
\Dk,g=..-

e complete linkage: Dy, , = max(Dy, ;, Dy ;)

 UPGMA: Dy, , = DeitDes
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K-means underlying model
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total var. = (var. between groups) + (var. within groups)
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K-means rationale

Find groups which minimize within group var. (equally: maximize

between group var.).

In other words:
Identify a partition G = {g1,. .., gx} solving:

arg 111111 Z Z llxi — per||?

1€k

with:

e x; € RP: vector of allele frequencies of individual

e i € RP: vector of means allele frequencies of group &
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Find groups which minimize within group var. (equally: maximize
between group var.).

In other words:
Identify a partition G = {g1,..., gi} solving:
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x; € RP: vector of allele frequencies of individual ¢
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K-means rationale
Find groups which minimize within group var. (equally: maximize
between group var.).

In other words:
Identify a partition G = {g1,..., gi} solving:

2
arg  min X; k
Q {91,901} Z Z i =

1€k

with:
e x; € RP: vector of allele frequencies of individual

e i € RP: vector of means allele frequencies of group &

12/29



Introduction

Identifying groups
o

Exploring group diversity
00000

000
00e000 0000
00000

K-means algorithm

The K-mean problem is solved by the following algorithm:
1. select random group means (uy, k=1,...,K)
assign each individual x; to the closest group — g

update group means fig,

go back to 2) until convergence (groups no longer change)
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® individual
* group mean

14/29



Introduction Identifying groups Exploring group diversity
o] 00000 000
0000e0 Q000

00000

K-means: limitations and extensions

Limitations

e slower for large numbers of alleles (e.g. 100,000)

e K-means does not identify the number of clusters (K)

run K-means after dimension reduction using PCA
try increasing values of K

use Bayesian Information Criterion (BIC) for model selection
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Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Value of BIC
versus number of clusters

1250
L

1200
L

Simulated data: island model with 6
populations

Actual number of
clusters

BIC

1150

1100
L

Number of clusters

K-means > STRUCTURE on simulated data (various island
and stepping stone models)

orders of magnitude faster (seconds vs hours/days)
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Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Value of BIC
versus number of clusters
Simulated data: island model with 6 N
o \ Actual number of
populatlons & ‘i\ clusters

1150
L

?;/
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Performances: -

e K-means > STRUCTURE on simulated data (various island
and stepping stone models)

e orders of magnitude faster (seconds vs hours/days)
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Why identifying clusters is not the whole story

Example of cattle breeds diversity (30 microsatellites, 704 individuals).
Group membership probabilities:

o
]

membership probabilty

Important to assess the relationships between clusters.
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Aggregating data by groups

group 1
group 2 | average

_)
group 3
group 4 alleles

alleles
group

e individual
o, 0
average
°
*, 5 X *

*

— multivariate analysis of group allele frequencies.
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Analysing group data

Available methods:

e Principal Component Analysis (PCA) of allele frequency table

e Genetic distance between populations — Principal
Coordinates Analysis (PCoA)

e Correspondance Analysis (CA) of allele counts
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Introduction

Analysing group data

Available methods:

e Principal Component Analysis (PCA) of allele frequency table

e Genetic distance between populations — Principal
Coordinates Analysis (PCoA)

e Correspondance Analysis (CA) of allele counts

Criticism:
e Loose individual information
e Neglect within-group diversity

e CA: possible artefactual outliers
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Multivariate analysis: reminder

Individuals

Find principal components with maximum total variance.
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Multivariate analysis: reminder

Loadings
(variable contributions)

Find principal components with maximum total variance.
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Multivariate analysis: reminder

Varables 1, 2,.., )

coordinates

principal components

Ll T i
Loadings
(variable contributions)

$00000000000050000000- - - - .- .-

Principal axis

Principal component

Find principal components with maximum total variance.
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Multivariate analysis: reminder

Variables 1,12, ... )

linear

(variable contributions)
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coordinates .
N TN
principal components i
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Loadings H
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H

Principal axis

Principal component

Find principal components with maximum total variance.
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But total variance may not reflect group differences

Need to optimize different criteria.
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Optimizing different criteria

Similar approaches to PCA can be used to optimize different
quantities:

PCA: total variance

Between-group PCA: variance between groups

Within-group PCA: variance within groups

Discriminant Analysis: variance between groups / variance
within groups
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Discriminant Analysis: limitations and extensions

Limitations:
e DA requires less variables (alleles) than observations
(individuals)
e DA requires uncorrelated variables (no frequencies, no linkage
disequilibrium)

data orthogonalisation /reduction using PCA before DA
overcomes limitations of DA

group membership probabilities, group prediction

lJombart et al. 2010, BMC Genetics
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Discriminant Analysis: limitations and extensions

Limitations:

e DA requires less variables (alleles) than observations
(individuals)

e DA requires uncorrelated variables (no frequencies, no linkage
disequilibrium)

Discriminant Analysis of Principal Components (DAPC)?:

e data orthogonalisation/reduction using PCA before DA
e overcomes limitations of DA

e group membership probabilities, group prediction

1Jombart et al. 2010, BMC Genetics
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Discriminant Functions
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Prlncmal axes
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PCA of seasonal influenza (A/H3N2) data
Data: seasonal influenza (A/H3N2), 500 HA segments.

-5
- H3N2, HA segment: PGA

Elgenvalues Sample sizes [} \

140
120
100

&0
60
40
= IEEA
0

Little temporal evolution, burst of diversity in 200277
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DAPC of seasonal influenza (A/H3N2) data

H3N2, HA segment: DAPC

2006

80
60
40
20

0

Sample sizes

ol

DA elgenvalues

Strong temporal signal, originality of 2006 isolates (new alleles).
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DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).
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Time to get your hands dirty (again)!

The pdf of the practical is online:
http://adegenet.r-forge.r-project.org/
or

Google — adegenet — documents — “Workshop Montpellier”
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