Introduction to multivariate analysis — applications in genomics —

Thibaut Jombart (t.jombart@imperial.ac.uk)

MRC Centre for Outbreak Analysis and Modelling Imperial College London

> MSc "Modern epidemiology" 22-03-2013

Genetic diversity of pathogen populations

Multivariate analysis in a nutshell

Applications to genomic data

Genetic diversity of pathogen populations

Genetic diversity of pathogen populations

Multivariate analysis in a nutshell

Applications to genomic data

Genetic diversity of pathogen populations

Multivariate data: some examples

Association between individuals? Correlations between variables?

Multivariate data: some examples

Association between individuals? Correlations between variables?

Species assemblage #2

Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

Multivariate analysis: an overview

Multivariate analysis, a.k.a:

- "dimension reduction techniques"
- "ordinations in reduced space"
- "factorial methods"

Purposes:

- summarize diversity amongst observations
- summarize correlations between variables

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: *Correspondance Analysis* (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

Differences lie in input data:

- quantitative/binary variables: *Principal Component Analysis* (PCA)
- 2 categorical variables: Correspondance Analysis (CA)
- >2 categorical variables: Multiple Correspondance Analysis (MCA)
- Euclidean distance matrix: *Principal Coordinates Analysis* (PCoA) / *Metric Multidimensional Scaling* (MDS)

1 dimension, 2 dimensions, P dimensions

Need to find most informative directions in a *P*-dimensional space.

1 dimension, 2 dimensions, P dimensions

Need to find most informative directions in a *P*-dimensional space.

1 dimension, 2 dimensions, P dimensions

Need to find most informative directions in a *P*-dimensional space.

Variables (v1, v2, ..., vP)

Reducing P dimensions into 1

- $\mathbf{X} \in \mathbb{R}^{N imes P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^{P}$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^{P} u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component

 \rightarrow find **u** so that $\frac{1}{N} \|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.

Reducing P dimensions into 1

- $\mathbf{X} \in \mathbb{R}^{N imes P}$; $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_P]$: data matrix
- $\mathbf{u} \in \mathbb{R}^{P}$; $\mathbf{u} = [u_1, \dots, u_P]$: principal axis $(\|\mathbf{u}\|^2 = \sum_{j=1}^{P} u_j^2 = 1)$
- $\mathbf{v} \in \mathbb{R}^N$; $\mathbf{v} = \mathbf{X}\mathbf{u} = \sum_{j=1}^P u_j \mathbf{x}_j$: principal component

 \rightarrow find **u** so that $\frac{1}{N} \|\mathbf{v}\|^2 = \mathsf{var}(\mathbf{v})$ is maximum.

Reducing P dimensions into 1

Reducing P dimensions into 1

- \mathbf{u}_1 and \mathbf{v}_1 : 1st principal axis and component
- u₂ and v₂: 2nd principal axis and component
- $\begin{array}{l} \rightarrow \text{ constraint: } \mathbf{u}_1 \perp \mathbf{u}_2 \text{ (} \Longleftrightarrow \text{ cor}(\mathbf{v}_1, \mathbf{v}_2) = 0 \text{)} \\ \rightarrow \text{ find } \mathbf{u}_2 \text{ so that } \frac{1}{N} \|\mathbf{v}_2\|^2 = \text{var}(\mathbf{v}_2) \text{ is maximum} \end{array}$

- \mathbf{u}_1 and \mathbf{v}_1 : 1st principal axis and component
- u₂ and v₂: 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ (\iff cor($\mathbf{v}_1, \mathbf{v}_2$) = 0) \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} ||\mathbf{v}_2||^2 = \mathsf{var}(\mathbf{v}_2)$ is maximum

- u₁ and v₁: 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ (\iff cor($\mathbf{v}_1, \mathbf{v}_2$) = 0) \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} ||\mathbf{v}_2||^2 = var(\mathbf{v}_2)$ is maximum

- \mathbf{u}_1 and \mathbf{v}_1 : 1st principal axis and component
- \mathbf{u}_2 and \mathbf{v}_2 : 2nd principal axis and component
- \rightarrow constraint: $\mathbf{u}_1 \perp \mathbf{u}_2$ ($\iff \operatorname{cor}(\mathbf{v}_1, \mathbf{v}_2) = 0$) \rightarrow find \mathbf{u}_2 so that $\frac{1}{N} ||\mathbf{v}_2||^2 = \operatorname{var}(\mathbf{v}_2)$ is maximum

How many principal components to retain?

Choice based on "screeplot": barplot of eigenvalues

Retain only "significant" structures... but not trivial ones.

Outputs of multivariate analyses: an overview

Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

Outputs of multivariate analyses: an overview

Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

Outputs of multivariate analyses: an overview

Main outputs:

- principal components: diversity amongst individuals
- principal axes: nature of the structures
- eigenvalues: magnitude of structures

Usual summary of an analysis: the biplot

Biplot: principal components (points) + loadings (arrows)

- groups of individuals
- discriminating variables (longest arrows)
- magnitude of the structures

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...

- variety of methods for different types of variables
- principal components (PCs) summarize diversity
- variable loadings identify discriminating variables
- other uses of PCs: **maps** (spatial structures), **models** (response variables or predictors), ...
Multivariate analysis in a nutshell

Applications to genomic data

Genetic diversity of pathogen populations

Multivariate analysis in a nutshell

Applications to genomic data

Genetic diversity of pathogen populations

DNA sequences contain information about the spatio-temporal dynamics of biological populations

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.

- hundreds/thousands individuals
- up to millions of single nucleotide polymorphism (SNPs)
- \Rightarrow Multivariate analysis use to summarize genetic diversity.

First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)

First 2 principal components separate populations into continents.

First application of multivariate analysis in genetics

PCA of genetic data, native human populations (Cavalli-Sforza 1966, Proc B)

First 2 principal components separate populations into continents.

Applications: some examples

PCA of genetic data + colored maps of principal components

(Cavalli-Sforza et al. 1993, Science)

Signatures of Human expansion out-of-Africa.

Applications to genomic data

Since then...

Multivariate methods used in genetics

- Principal Component Analysis (PCA)
- Principal Coordinates Analysis (PCoA) / Metric Multidimensional Scaling (MDS)
- Correspondance Analysis (CA)
- Discriminant Analysis (DA)
- Canonical Correlation Analysis (CCA)
- ...

Since then...

Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...
- review in Jombart et al. 2009, Heredity 102: 330-341

Applications in genetics of pathogen populations.

Applications to genomic data

Genetic diversity of pathogen populations

Since then...

Applications

- reveal spatial structures (historical spread)
- explore genetic diversity
- identify cryptic species
- discover genotype-phenotype association
- ...
- review in Jombart et al. 2009, Heredity 102: 330-341

Applications in genetics of pathogen populations.

Genetic diversity of pathogen populations

Multivariate analysis in a nutshell

Applications to genomic data

Genetic diversity of pathogen populations

Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)

Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)

Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)

Genetic data: increasingly important in infectious disease epidemiology

- classify pathogens, describe their relationships
- assess the spatio-temporal dynamics of infectious diseases
- reconstruct epidemiological processes (transmission)

Different questions at different scales

Where and how can multivariate analysis of pathogen genetic data be useful?

Different questions at different scales

Where and how can multivariate analysis of pathogen genetic data be useful?

Population genetics: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- \Rightarrow aim: identify and describe genetic clusters

Population genetics: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- \Rightarrow aim: identify and describe genetic clusters

Population genetics: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- \Rightarrow aim: identify and describe genetic clusters

Population genetics: identify populations of organisms and describe their relationships

What is a population?

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).

 \Rightarrow aim: identify and describe genetic clusters

Population genetics: identify populations of organisms and describe their relationships

- Usual definition: set of organisms mating at random
- *Problem*: no "mating" in most pathogens (e.g. viruses, bacteria)
- **Genetic clusters**: set of genetically related pathogens (e.g. same outbreak, same epidemic).
- \Rightarrow aim: identify and describe genetic clusters

Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

- K-means ≥ STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

- K-means ≥ STRUCTURE on simulated data (various island and stepping stone models)
- orders of magnitude faster (seconds vs hours/days)

PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.

Little temporal evolution, burst of diversity in 2002??

PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.

Little temporal evolution, burst of diversity in 2002??
Which diversity to represent?

Total diversity not relevant to analyse clusters.

Discriminant Analysis of Principal Components (DAPC): (Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA

Which diversity to represent?

Total diversity not relevant to analyse clusters.

Discriminant Analysis of Principal Components (DAPC): (Jombart et al. 2010, BMC Genetics)

- maximizes group discrimination ("between/within" ratio)
- provides group membership probabilities (prediction possible)
- as computer-efficient as PCA

DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).

DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).

Identifying antigenic clusters in influenza (A/H3N2)

Antigenic clusters identified directly from AA sequences.

Identifying antigenic clusters in influenza (A/H3N2)

Antigenic clusters identified directly from AA sequences.

DAPC to identify structuring alleles

DAPC finds combinations of alleles most differing between groups.

Simulated data: (Jombart & Ahmed 2011, *Bioinformatics*)

- 2 clusters, 50 isolates each
- 1,000,000 non structured SNPs
- 1,000 structured SNPs (i.e. different frequencies between groups)

Possible applications to pathogen GWAS (e.g. SNPs related to antibiotic resistance in bacteria).

DAPC to identify structuring alleles

DAPC finds combinations of alleles most differing between groups.

Simulated data: (Jombart & Ahmed 2011, *Bioinformatics*)

- 2 clusters, 50 isolates each
- 1,000,000 non structured SNPs
- 1,000 structured SNPs (i.e. different frequencies between groups)

Possible applications to pathogen GWAS (e.g. SNPs related to antibiotic resistance in bacteria).

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand. ~ 200 full-genome sequences. $\sim 1,000$ SNPs.

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand. ~ 200 full-genome sequences. $\sim 1,000$ SNPs.

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand. ~ 200 full-genome sequences. $\sim 1,000$ SNPs.

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand. ~ 200 full-genome sequences. $\sim 1,000$ SNPs.

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital, Thailand. ~ 200 full-genome sequences. $\sim 1,000$ SNPs.

Observations:

- greater diversity than expected
- genetic clusters can be defined
- transmissions at within-cluster level
- multivariate analysis = loss of information

Multivariate analysis usually not informative on small-scale processes.

- multivariate analysis used for ~ 50 years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific application to pathogen genetic data
- limits reached when reconstructing fine-scale processes

- multivariate analysis used for ~ 50 years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific application to pathogen genetic data
- limits reached when reconstructing fine-scale processes

- multivariate analysis used for ~ 50 years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific application to pathogen genetic data
- limits reached when reconstructing fine-scale processes

- multivariate analysis used for ~ 50 years in genetics, still an active field for methodological development
- increasingly useful as datasets grow
- specific application to pathogen genetic data
- limits reached when reconstructing fine-scale processes