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Multivariate analysis: an overview

Multivariate analysis, a.k.a:

e “dimension reduction techniques”
e “ordinations in reduced space”

e “factorial methods”

summarize diversity amongst observations

summarize correlations between variables
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Multivariate analysis: an overview

Multivariate analysis, a.k.a:
e “dimension reduction techniques”
e “ordinations in reduced space”
e “factorial methods"

Purposes:

e summarize diversity amongst observations

e summarize correlations between variables
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Most common methods

Differences lie in input data:
e quantitative/binary variables: Principal Component Analysis
(PCA)
e 2 categorical variables: Correspondance Analysis (CA)

e >2 categorical variables: Multiple Correspondance Analysis
(MCA)

e Euclidean distance matrix: Principal Coordinates Analysis
(PCoA) / Metric Multidimensional Scaling (MDS)

Many other methods for > 2 data tables, spatial analysis,
phylogenetic analysis, etc.
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1 dimension, 2 dimensions, P dimensions

Variables (v1,v2, ..., vP)

Individuals

Need to find most informative directions in a P-dimensional space.
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Reducing P dimensions into 1

Individuals

o X ¢ RVXP: X = [x1]...|xp]: data matrix
e uc R”; u=[u,...,up|: principal axis
(Il =X, wf = 1)
eveRN, v=Xu= Zle u;jX;: principal component

— find u so that 4| v||? = var(v) is maximum.
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Applications to genomic data

P dimensions into 1
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Keeping more than one principal component

Varabes1,12,.. )

coordinates
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Principal axis
Principal component

e u; and vy: 1st principal axis and component
e uy and vy: 2nd principal axis and component

— constraint: u; L ug (<= cor(vy, ve) =0)
— find uy so that +||v2||? = var(vs) is maximum
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How many principal components to retain?

Choice based on “screeplot™ barplot of eigenvalues
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Retain only “significant” structures... but not trivial ones.
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Outputs of multivariate analyses: an overview

. data scores of individuals
Variables
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Main outputs:

e principal components: diversity amongst individuals
e principal axes: nature of the structures

e eigenvalues: magnitude of structures
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Applications to genomic data

Genetic diversity of pathogen populations

Usual summary of an analysis: the biplot

Eigenvalues

v2

vP
...%
.. ®

Biplot: principal components (points) + loadings (arrows)

e groups of individuals
e discriminating variables (longest arrows)

e magnitude of the structures
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Multivariate analysis in a nutshell

variety of methods for different types of variables

principal components (PCs) summarize diversity

variable loadings identify discriminating variables

e other uses of PCs: maps (spatial structures), models
(response variables or predictors), ...
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From DNA sequences to patterns of biological diversity
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Applications to genomic data

From DNA sequences to patterns of biological diversity

DNA sequences contain information
about the spatio-temporal dynamics
of biological populations
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DNA sequences: a rich source of information
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= Multivariate analysis use to summarize genetic diversity.
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First application of multivariate analysis in genetics

PCA of genetic data, native human populations (cavaliisforza 1966, Proc 5)
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First 2 principal components separate populations into continents.
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Applications: some examples

PCA of genetic data + colored maps of principal components

(Cavalli-Sforza et al. 1993, Science)

The History and
phy

of Human lienes

Signatures of Human expansion out-of-Africa.
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Since then...

Multivariate methods used in genetics

e Principal Component Analysis (PCA)

Principal Coordinates Analysis (PCoA) / Metric Multidimensional
Scaling (MDS)

Correspondance Analysis (CA)
e Discriminant Analysis (DA)

Canonical Correlation Analysis (CCA)
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Since then...

Applications

e reveal spatial structures (historical spread)
e explore genetic diversity
e identify cryptic species

e discover genotype-phenotype association

e review in Jombart et al. 2009, Heredity 102: 330-341

Applications in genetics of pathogen populations.
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Why investigate the diversity of pathogen populations?

Genetic data: increasingly important in infectious disease
epidemiology

Purposes

classify pathogens, describe their
relationships

assess the spatio-temporal
dynamics of infectious diseases
reconstruct epidemiological
processes (transmission)
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Different questions at different scales

Report
Plasmodium falciparum Accompanied

the Human Expansion out of Africa

Methicillin-resistant Staphylococcus aureus in
hospitals and the community: Stealth dynamics

I

The Glabal Circulation of Seasonal
Influenza A (H3N2) Viruses

Household Transmission of 2009 Pandemic
Influenza A (HIN1) Virus in the United States

Where and how can multivariate analysis of pathogen genetic data
be useful?
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Describing pathogen populations

Population genetics: identify populations of organisms and
describe their relationships

What is a population?

e Usual definition: set of organisms mating at random

e Problem: no “mating” in most pathogens (e.g. viruses,
bacteria)

¢ Genetic clusters: set of genetically related pathogens (e.g.
same outbreak, same epidemic).

= aim: and genetic clusters
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Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Value of BIC
versus number of clusters

1250
I
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Variance partitioning model (ANOVA):

Actual number of
clusters

BIC

tot. variance = (bet. groups) + (wit. groups)

1150

1100
L

Number of clusters

K-means > STRUCTURE on simulated data (various island
and stepping stone models)

orders of magnitude faster (seconds vs hours/days)
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Variance partitioning model (ANOVA):
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PCA of seasonal influenza (A/H3N2) data

Data: seasonal influenza (A/H3N2), 500 HA segments.

d=5

>

_—H3N2, HA segment: PQ

Eigenvalies Sample sizes )

80
60
40
20

0

Little temporal evolution, burst of diversity in 200277
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Data: seasonal influenza (A/H3N2), 500 HA segments.

d=5

‘H3N2, HA segment: PQ

>

Elgenvalies Sample sizes |\
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Little temporal evolution, burst of diversity in 200277
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Which diversity to represent?

Total diversity not relevant to analyse clusters.

variable 2

N\

variable 2

i‘l‘% i} i:% variable 1

variable 1 —/

maximizes group discrimination (“between /within" ratio)
provides group membership probabilities (prediction possible)
as computer-efficient as PCA
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Which diversity to represent?

Total diversity not relevant to analyse clusters.

variable 2

3 **&**

variable 2

%% i““‘s * variable 1

variable 1

Discriminant Analysis of Principal Components (DAPC):

(Jombart et al. 2010, BMC Genetics)

e maximizes group discrimination (“between /within" ratio)

e provides group membership probabilities (prediction possible)
e as computer-efficient as PCA
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DAPC of seasonal influenza (A/H3N2) data

H3N2, HA segment: DAPC

2006

2001
2002
L '! —®
thd
Sample sizes -y p

DA eigenvalues

100
80
60
40
20

0

Strong temporal signal, originality of 2006 isolates (new alleles).
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DAPC of seasonal influenza (A/H3N2) data

d-5
H3N2, HA segment: DAPC

Sample sizes

f IIDHII

Strong temporal signal, originality of 2006 isolates (new alleles).

DA eigenvalues

PMho@mSn R
5538883
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|dentifying antigenic clusters in influenza (A/H3N2)

Applications to genomic data

Genetic diversity of pathogen populations

Antigenic maps

DAPC of AA sequences - HA segment

DEﬁo" L]

Q DA eigenvalues

BEY
e .
< F‘l%:

a
WU95

{k

(Smith et al., 2004, Science)

(Aguas & Ferguson, in prep)
Contact: raguas@imperial.ac.uk

Antigenic clusters identified directly from AA sequences.
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|dentifying antigenic clusters in influenza (A/H3N2)

Antigenic maps DAPC of AA sequences - HA segment
HK68; Q DA eigenvalues
EN72 ‘)
0
.
.'Q(T7 s ‘\:-17°5 . s BEBY
ve oY % S
D%% T =~ =1
el 2 1K L T E
Brrog sisT® T = ;
. 982 '.! @
:. :‘i WUgs .
.
;*: ) K
] ’ E92 T
o o W
BESY® 7 X b
wuss, *, e
0
i
14 = L
.@SY97
b
o,
>
FUD2® =
- o
(Smith et al., 2004, Science) (Aguas & Ferguson, in prep)
Contact: raguas@imperial.ac.uk

Antigenic clusters identified directly from AA sequences.
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DAPC to identify structuring alleles

DAPC finds combinations of alleles most differing between groups.

az
Simulated data:
(Jombart & Ahmed 2011, Bioinformatics) 5
® 2 clusters, 50 isolates each ° . ) .
Discriminant function 1
e 1,000,000 non structured SNPs b
e 1,000 structured SNPs g
(i.e. different frequencies between 'S
grou pS) § g 0 500,000 1,000,000
%: - sttt
° 997j000 998{000 99Qjﬂﬂﬂ \,00(‘],000 1,00:‘000

SNP position

Possible applications to pathogen GWAS (e.g. SNPs related to
antibiotic resistance in bacteria)
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DAPC to identify structuring alleles

DAPC finds combinations of alleles most differing between groups.

o]
00 01 02 03 04

Simulated data:

(Jombart & Ahmed 2011, Bioinformatics)

Density

L

® 2 clusters, 50 isolates each . ) .
e 1,000,000 non structured SNPs

® 1,000 structured SNPs
(i.e. different frequencies between

groups)

Discriminant function 1

—

0 500,000 1,000,000

o

Contribution

- [T T

T
997,000

T T
1,000,000 1,001,000

0.00000  0.00006  0.00012

T T
998,000 999,000

SNP position

Possible applications to pathogen GWAS (e.g. SNPs related to
antibiotic resistance in bacteria).

Genetic diversity of pathogen populations
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Limits of multivariate analysis

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital,
Thailand. ~ 200 full-genome sequences. ~ 1,000 SNPs.
Maximum likelihood

phylogeny + K-means
clusters XX

Observations:

® greater diversity than expected
genetic clusters can be defined
transmissions at within-cluster level

multivariate analysis = loss of
information
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Limits of multivariate analysis

Methicillin-resistant Staphylococcus aureus (MRSA) outbreak within hospital,
Thailand. ~ 200 full-genome sequences. ~ 1,000 SNPs.

Maximum likelihood
phylogeny + K-means
clusters

Observations:

® greater diversity than expected
® genetic clusters can be defined
® transmissions at within-cluster level

® multivariate analysis = loss of
information

Multivariate analysis usually not informative on small-scale processes.
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Summary

e multivariate analysis used for ~ 50 years in genetics, still an
active field for methodological development

increasingly useful as datasets grow
specific application to pathogen genetic data

limits reached when reconstructing fine-scale processes
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