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Genetic data (genetic markers)

- Allele frequency
- Marker presence/absence

(Variables, Descriptors)

- Individual

- Population
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Different ways of exploiting this rich information




Two complementary approaches

Biological processes Genetic patterns

a (model callibration ) @ ®

* One or a small number of models (possible comparisons)

 Parameter estimation based on the data




Two complementary approaches

Biological processes Genetic patterns

* No explicit model, little underlying assumptions

» Description of specific features (e.g. genetic diversity)




Different types of methods

 Model-based approaches
- Bayesian clustering (e.g. STRUCTURE, BAPS)

- Phylogenetic trees (e.g. PhyML, BEAST)

 Exploratory approaches
- Distance-based trees (e.g. UPGMA, NJ)

- Multivariate methods (e.g. PCA, PCoA)




Different methods

» Model-based approaches
> Bayesian clustering (e.g. STRUCTURE, BAPS)

> Phylogenetic trees (e.g. PhyML, BEAST)

 Exploratory approaches
> Distance-based trees (e.g. UPGMA, NJ)

> Multivariate methods (e.g. PCA, PCoA)
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Genetic data (again)

- Allele frequency
- Marker presence/absence

(Variables, Descriptors)

- Individual

- Population
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This information can be considered from the geometric point of view.




Multivariate analysis — rationale (1/3)
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Multivariate analysis — rationale (2/3)
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Multivariate analysis — rationale (2/3)

O Biological entities

— Alleles
—— Principal axis
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Summarise the genetic diversity among individuals / populations




Multivariate analysis — rationale (3/3)
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In practice, lots of methods are used

To name a few (used in genetics):
 Principal Component Analysis (PCA)
~ centred / not centred / fancy centring
~ scaled / not scaled / fancy scaling
- fransformed for compositional data

 Principal Coordinates Analysis (PCoA),
aka (Metric) Multidimensional Scaling (MDS)
> many genetic distances

e Correspondence Analysis (CA)

 Discriminant Analysis (DA)

e ... (review in Jombart et al. 2009, Heredity 102, 330-341)
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Multivariate analyses: some examples (1/6)

Getting a picture of the genetic diversity
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Multivariate analyses: some examples (2/6)

Using PC as response/predictor in models

Allozymes
Populations Date.]
matrix
_ : Climate
Genetic features ~ Covariates Environmental  Residuals
(Principal components) variables
Populations Data

(Mulley et al. 1979, Biochemical Genetics) matrix




Multivariate analyses: some examples (3/6)

Mapping the genetic differentiation

Legend: principal components
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(Cavalli-Sforza et al. 1993, Science)




Multivariate analyses: some examples (4/6)

Mapping the genetic differentiation (again)

microsatellites x\

Populations




Multivariate analyses: some examples (5/6)

Studying hybridization
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(Paul et al. 2010, Biological Invasions)




Multivariate analyses: some examples (6/6)

Analysing the temporal evolution of pathogens

Temporal evolution
of influenza A/H3N2
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(Jombart et al. submitted)
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A wide range of possible applications

* Many different data and questions
» Wide range of existing methods
» Adaptability to specific problems

(e.g. non-even sampling, different ploidy levels,
heterogeneous variation amongst loci)

« Datasets are growing bigger and more complex:
more multivariate analyses to come...
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Why look for spatial genetic structures?

%5

Most genetic models predict that genetic
diversity should be spatially structured:
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Taking spatial information into account

 Usual multivariate methods do not use
spatial information.

* They can reveal obvious' spatial patterns, but will overlook
more subtle structures.

* To seek spatial genetic structures, we must find the part of
the genetic variability related to spatial proximity between
individuals/populations.




Usual multivariate analyses (recall)

Allele

Datz.a +

Entities

Scatterness
measurement (e.qg. distance)

Y

Principal axes (alleles contributions)
Principal components (max. diversity, uncorrelated)




Spatial Principal Component Analysis (sPCA)
(Jombart et al. 2009)
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Population genetic software — the scary picture
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Figure 1 |Flow chart of possible data exchange between different population genetics programs. Although many
programs have their own input-file specification. datafiles can stillbe exchanged between most programs (black
arrows). avoiding tedious reformatting processes. The red stars are recommended starting points to format an initial
data set.Blue ellipses represent multi-purpose packages whereas individual-centred programs are shown in violet. The
two conversion programs are shown in yvellow. Specialized programs are shown in green. and light grey ellipses
represent programs that are not reviewed here, but the data formats of which are used by other programs allowing
indirect data exchange (white arrows). The datafiles associated with the progrems listed on the bottom row cannot be
exchanged directly with the other programs.

(Excoffier & Heckel 2006, Nature Reviews Genetics)

“In a perfect world, research teams would be able to develop analysis tools to address their
specific problem, but in practice they have to make their data fit the available tools, leading to
obvious discrepancies between the initial goals and the results’




Taking genetic markers into the field of

(multivariate) statistics -
ED oD @
Population genetic software: S\ owee
» very few multivariate methods ay s

* no plasticity
* poor data interoperability

The @ software:
 many (most) multivariate methods
e total plasticity

* tons of statistical methods (tests, modelling, Monte-Carlo)
e great graphics

 great interoperability (e.g., GIS)

e programming language

* free software




The adegenet package for @ 1/3)

(Jombart 2008)

Purpose:
 take genetic markers into a suitable format
» adapt multivariate methods to genetic markers
» provide advanced data handling

e provide standard population genetics tools

e implement novel methods (e.qg., sPCA, DAPC, seqTrack)




The adegenet package for (E
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The adegenet package for @ (3/3)

Where to get information:
e reference: Jombart (2008) Bioinformatics 24: 1403-1405

° adegenet website: http://adegenet.r-forge.r-project.org/
(tutorials and manuals for download)

° adegenet forum: adegenet-forum@lists.r-forge.r-project.org

- Here and now!



http://adegenet.r-forge.r-project.org/
mailto:adegenet-forum@lists.r-forge.r-project.org
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