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Abstract

This vignette provides an introductory tutorial to the adegenet package [4] for
the R software [12]. This package implements tools to handle, analyse and simulate
genetic data. Originally developped for multiallelic, codominant markers such as
microsatellites, adegenet now also handles dominant markers, allows for any ploidy in
the data, handles SNPs and sequence data, and implements a memory-efficient storage
for genome-wide SNP data. This tutorial provides an overview of adegenet’s basic
functionalities. Since adegenet 1.4-0, this tutorial is no longer distributed as a package
vignette. Also note that adegenet has undergone substantial changes with version
2.0.0, including a reform of the data structure and new accessors, all documented in
this tutorial.
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1 Introduction

This tutorial introduces some basic functionalities of the adegenet package for R [12]. The
purpose of this package is to provide tools for handling, analysing and simulating genetic
data, with an emphasis on multivariate approaches and exploratory methods. Standard
multivariate analyses are implemented in the adej package [2], of which adegenet was
originally an extension. However, the package has since grown methods of its own such
as the Discriminant Analysis of Principal Components (DAPC, [8]), the spatial Principal
Components Analysis (sPCA, [5]), or the SeqTrack algorithm [6]. In this tutorial, we
introduce the main data structures, show how to import data into adegenet, and cover some
basic population genetics and multivariate analysis.

Other tutorials are available via the command adegenetTutorial:
e adegenetTutorial ("spca"): tutorial on the sPCA
e adegenetTutorial("dapc"): tutorial on the DAPC

e adegenetTutorial("genomics"): tutorial on handling large SNP datasets using
genlight objects



2 Getting started

2.1 Installing the package - stable version

Before going further, we shall make sure that adegenet is well installed on the computer. The
current version of the package is 2.0.0. Make sure you have a recent version of R (> 3.2.1)

by typing:
R.version.string
## [1] "R Under development (unstable) (2015-06-18 r68542)"
Then, install adegenet with dependencies using;:
install.packages("adegenet", dep=TRUE)
We can now load the package alongside other useful packages:
library("ape")
library("pegas")
library("seqinr")
library("ggplot2")

library("adegenet")

If at some point you are unsure about the version of the package, you can check it using:

packageDescription("adegenet", fields = "Version")

## [1] "2.0.0"

adegenet version should read 2.0.0.

2.2 Installing the package - devel version

The development of adegenet is hosted on github:
https://github.com/thibautjombart/adegenet.
You can install this version using the package devtools and the following commands:

library("devtools")
install_github("thibautjombart/adegenet")
library("adegenet")

The development version may implement new features and fix known issues. However, it
may also occasionally be broken, as this is our working copy of the project. Usual disclaimers
apply here: this package is provided with no warranty, etc. If unsure, use the stable version.
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2.3 Getting help in R

There are several ways of getting information about R in general, and about adegenet in
particular. The function help.search is used to look for help on a given topic. For instance:

help.search("Hardy-Weinberg")

replies that there is a function HWE.test.genind in the adegenet package, and other
similar functions in genetics and pegas. To get help for a given function, use ?foo where foo
is the function of interest. For instance (quotes and parentheses can be removed):

?spca

will open up the manpage of the spatial principal component analysis [5]. At the end
of a manpage, an ‘example’ section often shows how to use a function. This can be copied
and pasted to the console, or directly executed from the console using example. For further
questions concerning R, the function RSiteSearch is a powerful tool for making online
researches using keywords in R’s archives (mailing lists and manpages).

adegenet has a few extra documentation sources. Information can be found from
the website (http://adegenet.r-forge.r-project.org/), in the ‘documents’ section,
including several tutorials and a manual which compiles all manpages of the package, and a
dedicated mailing list with searchable archives. To open the website from R, use:

adegenetWeb ()

The same can be done for tutorials, using adegenetTutorial (see manpage to choose the
tutorial to open). You will also find an overview of the main functionalities of the package

typing:
7adegenet
Note that you can also browse help pages as html pages, using:

help.start()

To go to the adegenet page, click ‘packages’, ‘adegenet’, and ‘adegenet-package’.

2.4 Asking help on a forum

Several mailing lists are available to find different kinds of information on R. adegenet has
its own dedicated forum/mailing list: adegenet-forum@lists.r-forge.r-project.org
To avoid spam, this list is filtered; subscription is recommended, and can be done at:


http://adegenet.r-forge.r-project.org/
adegenet-forum@lists.r-forge.r-project.org

https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/adegenet-forum

Posting questions on R forums can sometimes be a traumatic experience, and we are
trying to avoid this as much as possible on the adegenet forum. To this end, the following
points are worth keeping in mind:

read the doc first: manpages and tutorials take an awful long time to write and
maintain; make sure your answer is not in an obvious place before asking a question;
pretending to have read all the available doc while you have not even looked at the
basics tutorial is a clever, yet often unsuccessful strategy.

search the archives: adegenet forum has searchable archives (see the adegenet
website); your answer may be there already, so it is worth checking.

give us info: you tried something, it is not working.. give us some information: what
version of adegenet are you using, what commands did you enter and what was the
output, etc.

avoid personal messages: the adegenet forum has plenty of advantages: several
people are likely to reply and participate in the conversation, answers are generally
faster, and all of this is archived and searchable. Please do not email the developers
directly, unless you need to discuss confidential matters.

short answers are okay: some answers will be short. Do not take them as rude, or
think people are upset: answering questions on a forum is a time-consuming activity
and the reward for it is low. Sometimes the best answer will be pointing to relevant
documentation, e.g. “Please check ?xvalDapc”. If you get this, we (most likely) still
like you.

The adegenet forum is not the only forum that might be relevant. Others include:

R-sig-genetics: genetics in R.
https://stat.ethz.ch/mailman/listinfo/r-sig-genetics

R-sig-phylo: phylogenetics in R.
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo

R-help: general questions about R.
https://stat.ethz.ch/mailman/listinfo/r-help

Please avoid double-posting (it is often considered to be rude).

2.5

Bug report, feature requests, contributions: we are all one!

Free software evolves through interactions between communities of developers and users.
This is especially true in R, where these two communities are very much intermingled. In
short: we are all contributors! These contributions include:

asking a question: see section above


https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/adegenet-forum
https://stat.ethz.ch/mailman/listinfo/r-sig-genetics
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
https://stat.ethz.ch/mailman/listinfo/r-help

e asking for a new feature: something useful is missing, and you think it will be useful
to others? Say it! Post a feature request using github’s issues:
https://github.com/thibautjombart/adegenet/issues

e reporting a possible bug: bugs are rare, but if you think you found one, post it as
an issue on github:
https://github.com/thibautjombart/adegenet/issues

e contributions: github makes contributions very easy; fork the project, make the
changes you want, and when you are happy and the package passes the checks, send a
pull request; for more on this go to the github page:
https://github.com/thibautjombart/adegenet And please, remember to add
yourself as a contributor in the DESCRIPTION and relevant manpages!


https://github.com/thibautjombart/adegenet/issues
https://github.com/thibautjombart/adegenet/issues
https://github.com/thibautjombart/adegenet

3 Object classes

Two main classes of objects are used for storing genetic marker data, depending on the level
at which the genetic information is considered: genind is used for individual genotypes,
whereas genpop is used for alleles numbers counted by populations. Note that the term
'population’, here and later, is employed in a broad sense: it simply refers to any grouping
of individuals. The specific class genlight is used for storing large genome-wide SNPs data.
See the genomics tutorial for more information on this topic.

3.1 genind objects

These objects store genetic data at an individual level, plus various meta-data (e.g. group
membership). genind objects can be obtained by reading data files from other software,
from a data.frame of genotypes, by conversion from a table of allele counts, or even from
aligned DNA or proteic sequences (see 'importing data’). Here, we introduce this class using
the dataset nancycats, which is already stored as a genind object:

data(nancycats)
is.genind(nancycats)

## [1] TRUE
nancycats

## /// GENIND OBJECT /////////

##

## // 237 individuals; 9 loci; 108 alleles; size: 158.4 Kb
#

## // Basic content

#i# @tab: 237 x 108 matrix of allele counts

## @loc.n.all: number of alleles per locus (range: 8-18)
#i# @loc.fac: locus factor for the 108 columns of Q@tab
#it @all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

#H @call: genind(tab = truenames(nancycats)$tab, pop = truenames(nancycats)$pop)

##

## // Optional content

#it @pop: population of each individual (group size range: 9-23)
#it Q@other: a list containing: xy

A genind object is formal S4 object with several slots, accessed using the '@’ operator

(see class?genind). Note that the '$’ is also implemented for adegenet objects, so that
slots can be accessed as if they were components of a list.

genind objects possess the following slots:
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tab: a matrix of alleles counts (individuals in rows, alleles in columns).
loc.n.all: the number of alleles in each marker.

loc.fac: a factor indicating which columns in @tab correspond to which marker.
all.names: a list of allele names for each locus.

ploidy: a vector of integer indicating the ploidy of each individual; constant ploidy is
assumed across different loci of a single individual, but different individuals can have
different ploidy.

type: a character string indicating whether the marker is codominant (codom) or
presence/absence (PA).

call: the matched call, i.e. command used to create the object.

pop: (optional) a factor storing group membership of the individuals; when present,
method needing a population information will automatically use this if nothing else is
provided.

strata: (optional) a data.frame storing hierarchical structure of individuals (see
dedicated tutorial).

hierarchy: (optional) a formula defining the hierarchical structure of individuals (see
dedicated tutorial).

other: (optional) a list storing optional information.

Slots can be accessed using '@ or ’$’, although it is recommended to use accessors to retrieve
and change slot values (see section "Using accessors’).

The main slot of a genind is the table of allelic counts @tab, with individuals in rows and
alleles in columns. For instance:

nancycats[10:18, loc="fca8"]@tab

i
#Hit
##
##
##
#Hit
#Hit
##
##
##
#Ht

fca8.117 fca8.119 fca8.121 fca8.123 fca8.127 fca8.129 fca8.131
N224 0 0 0 0 0 0 0
N7 0 0 0 0 0 0 0
N141 0 0 0 0 0 1 0
N142 0 0 0 0 0 1 0
N143 0 0 0 0 0 0 0
N144 0 0 0 0 0 0 1
N145 0 0 0 0 0 1 0
N146 0 0 0 0 0 1 0
N147 0 0 0 0 0 1 0

fca8.133 fca8.135 fca8.137 fca8.139 fca8.141 fca8.143 fca8.145



## N224 0 2 0 0 0 0 0
## N7 0 0 1 0 1 0 0
## N141 1 0 0 0 0 0 0
## N142 1 0 0 0 0 0 0
## N143 2 0 0 0 0 0 0
## N144 0 1 0 0 0 0 0
## N145 0 1 0 0 0 0 0
## N146 1 0 0 0 0 0 0
## N147 0 1 0 0 0 0 0
#it fca8.147 fca8.149
## N224 0 0
## N7 0 0
## N141 0 0
## N142 0 0
## N143 0 0
## N144 0 0
## N145 0 0
## N146 0 0
## N147 0 0

Individual 'N224" is an homozygote for the allele 135 at the locus 'fca8’, while N141” is
an heterozygote with alleles 129/133. Note that as of adegenet 2.0.0, this table is no storing
data as relative frequencies. These can still be obtained using the accessor ’tab’. The
particular case of presence/absence data is described in a dedicated section (see 'Handling
presence/absence data’). As of version 2.0.0 of adegenet, the slots @strata and @hierarchy
implement hierarchical population structures. See dedicated tutorial for more on this topic.

Note that objects can be regenerated using the matched call stored in genind objects, i.e.
the instruction that created it. For instance:

obj <- read.genetix(system.file("files/nancycats.gtx",package="adegenet"))

##

## Converting data from GENETIX to a genind object...
##

## ...done.

obj$call
## read.genetix(file = system.file("files/nancycats.gtx", package = "adegenet"))

toto <- eval(obj$call)

#Hit

## Converting data from GENETIX to a genind object...
HH

## ...done.
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identical(obj,toto)

## [1] TRUE

3.2 genpop objects

These objects store genetic data at a population level, plus various meta-data. Their struture
is nearly identical to genind objects, only simpler as they no longer store group membership
for individuals. genpop objects are created from genind objects using genind2genpop:

data(nancycats)
catpop <- genind2genpop(nancycats)

#it

## Converting data from a genind to a genpop object...
#Hit

## ...done.

catpop

## /// GENPOP OBJECT /////////

##

## // 17 populations; 9 loci; 108 alleles; size: 28.5 Kb
#it

## // Basic content

## @tab: 17 x 108 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 8-18)
#i# @loc.fac: locus factor for the 108 columns of Q@tab
H## @all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

#H @call: genind2genpop(x = nancycats)

##
## // Optional content
Hit Qother: a list containing: xy

As in genind objects, data are stored as numbers of alleles, but this time for populations
(here, cat colonies):

catpop$tab[1:5,1:10]

#i#t fca8.117 fca8.119 fca8.121 fca8.123 fca8.127 fca8.129 fca8.131
## PO1 0 0 0 0 0 0 0
## P02 0 0 0 0 0 10 9
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#Ht
##
##
##
#Ht
#Ht
##
#H#
##

P03 0 0 0 4 0 0 0

P04 0 0 0 3 0 0 0

P05 0 0 0 1 0 0 0
fca8.133 fca8.135 fca8.137

PO1 2 9 1

P02 8 14 2

P03 0 1 10

P04 1 7 17

P05 0 7 10

3.3 Using accessors

One advantage of formal (S4) classes is that they allow for interacting simply with possibly
complex objects. This is made possible by using accessors, i.e. functions that extract
information from an object, rather than accessing the slots directly. Another advantage of
this approach is that as long as accessors remain identical on the user’s side, the internal
structure of an object may change from one release to another without generating errors in
old scripts. Although genind and genpop objects are fairly simple, we recommend using
accessors whenever possible to access or modify their content.

Available accessors are:

e nInd: returns the number of individuals in the object; only for genind.
e nloc: returns the number of loci.

e nAll: returns the number of alleles for each locus.

e nPop: returns the number of populations.

e tab: returns a table of allele numbers, or frequencies (if requested), with optional
replacement of missing values; replaces the former accessor 'truenames’.

e indNames': returns/sets labels for individuals; only for genind.
e locNames': returns/sets labels for loci.
e alleles': returns/sets alleles.

e ploidy': returns/sets ploidy of the individuals; when setting values, a single value can
be provided, in which case constant ploidy is assumed.

e pop': returns/sets a factor grouping individuals; only for genind.
e strata': returns/sets data defining strata of individuals; only for genind.

e hierf: returns/sets hierarchical groups of individuals; only for genind.
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e other': returns/sets misc information stored as a list.

where T indicates that a replacement method is available using <-; for instance:
head (indNames (nancycats),10)

#it 001 002 003 004 005 006 007 008 009 010
## "N215" "N216" "N217" "N218" "N219" "N220" "N221" "N222" "N223" "N224"

indNames (nancycats) <- paste("cat", 1:nInd(nancycats),sep=".")
head (indNames (nancycats),10)

## [1] "cat.1" "cat.2" "cat.3" ‘'"cat.4" ‘"cat.5" ‘"cat.6" ‘'cat.7"
## [8] "cat.8" "cat.9" "cat.10"

Some accessors such as 1locNames may have specific options; for instance:

locNames (nancycats)

## [1] "fca8" "fca23" "fcad43" "fcadb" "fca77" "fca78" "fca90" "fca96" "fca37"
returns the names of the loci, while:

temp <- locNames(nancycats, withAlleles=TRUE)
head(temp, 10)

## [1] "fca8.117" "fca8.119" "fca8.121" "fca8.123" "fca8.127" "fca8.129"
## [7] "fca8.131" "fca8.133" "fca8.135" "fca8.137"

returns the names of the alleles in the form ’loci.allele’.
The slot "pop’ can be retrieved and set using pop:

obj <- nancycats[sample(1:50,10)]
pop (obj)

## [1] P02 P03 P02 PO1 P04 P02 P02 P01 P02 P04
## Levels: PO1 P02 P03 P04

pop(obj) <- rep("newPop",10)
pop (obj)

## [1] newPop newPop newPop newPop newPop newPop newPop newPop newPop newPop
## Levels: newPop

Accessors make things easier. For instance, when setting new names for loci, the columns
of @tab are renamed automatically:
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head (colnames(tab(obj)),20)

## [1] "fca8.117" "fca8.119" "fca8.121" "fca8.123" "fca8.127"
## [6] "fca8.129" "fca8.131" "fca8.133" "fca8.135" "fca8.137"
## [11] "fca8.139" "fca8.141" "fca8.143" "fca8.145" "fca8.147"
## [16] "fca8.149" "fca23.128" "fca23.130" "fca23.132" "fca23.136"

locNames (obj)
## [1] "fca8" "fca23" "fca43" "fcadb" "fca77" "fca78" "fca90" "fca96" "fca37"

locNames(obj) [1] <- "newLocusName"

locNames (obj)
## [1] "newLocusName" "fca23" "fcad3" "fcadb"
## [5] "fca77" "fca78" "fcad0" "fcad6"

## [9] "fca37"
head(colnames(tab(obj)),20)

## [1] "newLocusName.117" "newLocusName.119" "newLocusName.121"
## [4] "newLocusName.123" "newLocusName.127" "newLocusName.129"
## [7] "newLocusName.131" "newLocusName.133" "newLocusName.135"
## [10] "newLocusName.137" "newLocusName.139" "newLocusName.141"
## [13] "newLocusName.143" "newLocusName.145" "newLocusName.147"
## [16] "newLocusName.149" "fca23.128" "fca23.130"

## [19] "fca23.132" "fca23.136"

An additional advantage of using accessors is they are most of the time safer to use. For
instance, pop<- will check the length of the new group membership vector against the data,

and complain if there is a mismatch. It also converts the provided replacement to a factor,
while the command:

obj@pop <- rep("newPop",10)
## Error in checkAtAssignment("genind", "pop", "character"): assignment of
an object of class '"character" is not valid for @’pop’ in an object of class

"genind"; is(value, "factorOrNULL") is not TRUE

generates an error (since replacement is not a factor).
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4 Importing/exporting data

4.1 Importing data from GENETIX, STRUCTURE, FSTAT,
Genepop

Data can be read from the software GENETIX (extension .gtx), STRUCTURE (.str or
stru), FSTAT (.dat) and Genepop (.gen) files, using the corresponding read function:
read.genetix, read.structure, read.fstat, and read.genepop. These functions take
as main argument the path (as a string of characters) to an input file, and produce a genind
object. Alternatively, one can use the function import2genind which detects a file format
from its extension and uses the appropriate routine. For instance:

objl <- read.genetix(system.file("files/nancycats.gtx",package="adegenet"))

#it

## Converting data from GENETIX to a genind object...
#it

## ...done.

obj2 <- import2genind(system.file("files/nancycats.gtx", package="adegenet"))

#i#

## Converting data from GENETIX to a genind object...
#it

## ...done.

all.equal(objl,0bj2)
## [1] "Attributes: < Component \'"call\": target, current do not match when deparsed >"

The only difference between obj1 and obj2 is their call (which is normal as they were obtained
from different command lines).

4.2 Importing data from other software

Raw genetic markers data are often stored as tables with individuals in row and markers
in column, where each entry is a character string coding the alleles possessed at one locus.
Such data are easily imported into R as a data.frame, using for instance read.table for
text files or read.csv for comma-separated text files. Then, the obtained data.frame can
be converted into a genind object using df2genind.

There are only a few pre-requisite the data should meet for this conversion to be
possible. The easiest and clearest way of coding data is using a separator between alleles.
For instance, "80/78”, "80—78”, or ”80,78” are different ways of coding a genotype at a
microsatellite locus with alleles 80’ and 78”. Note that for haploid data, no separator shall
be used. The only contraint when using a separator is that the same separator is used in all
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the dataset. There are no contraints as to i) the type of separator used or ii) the ploidy of
the data. These parameters can be set in df2genind through arguments sep and ploidy,
respectively.

Alternatively, no separator may be used provided a fixed number of characters is used
to code each allele. For instance, in a diploid organism, ”0101” is an homozygote 1/1 while
71209” is a heterozygote 12/09 in a two-character per allele coding scheme. In a tetraploid
system with one character per allele, 71209” will be understood as 1/2/0/9.

Here, we provide an example using randomly generated tetraploid data and no separator.

temp <- lapply(1:30, function(i) sample(1:9, 4, replace=TRUE))

temp <- sapply(temp, paste, collapse="")

temp <- matrix(temp, nrow=10, dimnames=list(paste("ind",1:10), paste("loc",1:3)))
temp

#i# loc 1 1loc 2 1loc 3
## ind 1 "3195" "2245" "6674"
## ind 2 "6249" "5976" "157T"
## ind 3 "9349" "2689" "9783"
## ind 4 "7932" "3889" "9515"
## ind 5 "8612" "7751" "5345"
## ind 6 "4234" "8759" "6391"
## ind 7 "4375" "6338" "3132"
## ind 8 "b397" "9385" "6558"
## ind 9 "b5612" "5538" "1925"
## ind 10 "5168" "8568" "8349"

obj <- df2genind(temp, ploidy=4, sep="")

obj

## /// GENIND OBJECT /////////

##

## // 10 individuals; 3 loci; 27 alleles; size: 9.5 Kb
##

## // Basic content

#i# @tab: 10 x 27 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 9-9)
#it @loc.fac: locus factor for the 27 columns of @tab
#i# ©@all.names: list of allele names for each locus

#H @ploidy: ploidy of each individual (range: 4-4)

#it Otype: codom

## @call: df2genind(X = temp, sep = "", ploidy = 4)
#it

## // Optional content

## - empty -
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obj is a genind containing the same information, but recoded as a matrix of allele numbers
($tab slot). We can check that the conversion was exact by converting back the object into
a table of character strings (function genind2df):

genind2df (obj, sep="[")

## loc 1 loc 2 loc 3
## ind 1 3111915 2/21415 66174
## ind 2 9161214 5]91716 7171115
## ind 3 391914 2]91618 7191813
## ind 4 3191217 9181813 115/519
## ind 5 1161218 5|7|711 45|53
## ind 6 3/2]414 5|9|718 6/119]3
## ind 7 3151417 6181313 113]3]2
## ind 8 31915|7 5/91813 65|58
## ind 9 115|612 5/5]813 115]9]2

## ind 10 1|5|618 516|818 4]|91813

4.3 Handling presence/absence data

adegenet was primarly designed to handle codominant, multiallelic markers like
microsatellites. However, dominant markers like AFLP can be used as well. In such a
case, only presence/absence of alleles can be deduced accurately from the genotypes. This
has several consequences, like the unability to compute allele frequencies. Hence, some
functionalities in adegenet won’t be available for dominant markers.

From version 1.2-3 of adegenet, the distinction between both types of markers is made by
the slot @type of genind or genpop objects, which equals codom for codominant markers, and
PA for presence/absence data. In the latter case, the ’tab’ slot of a genind object no longer
contains allele frequencies, but only presence/absence of alleles in a genotype. Similarly, the
tab slot of a genpop object not longer contains counts of alleles in the populations; instead,
it contains the number of genotypes in each population possessing at least one copy of the
concerned alleles. Moreover, in the case of presence/absence, the slots 'loc.n.all’, "loc.fac’,
and ’all.names’ become useless, and are thus all set to NULL.

Objects of type "PA’” are otherwise handled like usual (type 'codom’) objects. Operations
that are not available for PA type will issue an appropriate error message.

Here is an example using a toy dataset ’AFLP.txt’ that can be downloaded from the
adegenet website, section 'Documentation’:

dat <- read.table(system.file("files/AFLP.txt",package="adegenet"), header=TRUE)
dat

## locl loc2 loc3 loc4d
## indA 1 0 1 1
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## indB 0 1 1 1
## indC 1 1 0 1
## indD 0O NA 1 NA
## indE 1 1 0 0
## indF 1 0 1 1
## indG 0 1 1 0

The function df2genind is used to obtain a genind object:

obj <- df2genind(dat, ploidy=1, type="PA")
obj

## /// GENIND OBJECT /////////

##

## // 7 individuals; 4 loci; 4 alleles; size: 4 Kb

##

## // Basic content

#Hit Otab: 7 x 4 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 4-4)
#H @ploidy: ploidy of each individual (range: 1-1)

#it Otype: PA

## @call: df2genind(X = dat, ploidy = 1, type = "PA")

##

## // Optional content

#it - empty -

tab(obj)

#it locl loc2 loc3d loc4d
## indA 1 0 1 1
## indB 0 1 1 1
## indC 1 1 0 1
## indD 0O NA 1 NA
## indE 1 1 0 0
## indF 1 0 1 1
## indG 0 1 1 0

One can see that for instance, the summary of this object is more simple (no numbers of
alleles per locus, no heterozygosity):

pop(obj) <- rep(c('a','b'),4:3)
summary (obj)

##
## # Total number of genotypes: 7
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HH

## # Population sample sizes:

## a b

## 4 3

#it

## # Percentage of missing data:
## [1] 7.142857

But we can still perform basic manipulation, like converting our object into a genpop:

obj2 <- genind2genpop(obj)

#i#

## Converting data from a genind to a genpop object...
#it

## ...done.

obj2

## /// GENPOP OBJECT /////////

##

## // 2 populations; 4 loci; 4 alleles; size: 2.8 Kb
##

## // Basic content

#it Otab: 2 x 4 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 4-4)
#H @ploidy: ploidy of each individual (range: 1-1)
#it Otype: PA

#t @call: genind2genpop(x = obj)

##

## // Optional content

#it - empty -

tab(obj2)

## locl loc2 loc3 loc4d
## a 2 2 3 3
## b 2 2 2 1

To continue with the toy example, we can perform a simple PCA. Allele presence absence
data are extracted and NAs replaced using tab:

X <- tab(obj, NA.method="mean"

Now the PCA is performed and plotted:
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## make PCA

pcal <- dudi.pca(X,scannf=FALSE,scale=FALSE)
temp <- as.integer(pop(obj))

myCol <- transp(c("blue","red"),.7) [temp]
myPch <- c¢(15,17) [temp]

## basic plot
plot(pcal$li, col=myCol, cex=3, pch=myPch)

## use wordcloud for mon-overlapping labels
library(wordcloud)
textplot(pcal$lil[,1], pcal$lil[,2], words=rownames(X), cex=1.4, new=FALSE)

## legend the azes by adding loadings

abline(h=0,v=0,col="grey",lty=2)

s.arrow(pcal$cl*.5, add.plot=TRUE)

legend("topright", pch=c(15,17), col=transp(c("blue","red"),.7),
leg=c("Group A","Group B"), pt.cex=2)
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More generally, multivariate analyses from ade4, sPCA (spca), DAPC (dapc), the global
and local tests (global.rtest, local.rtest), or the Monmonier’s algorithm (monmonier)
will work just fine with presence/absence data. However, it is clear that the usual Euclidean
distance (used in PCA and sPCA), as well as many other distances, is not as accurate
to measure genetic dissimilarity using presence/absence data as it is when using allele
frequencies. The reason for this is that in presence/absence data, a part of the information
is simply hidden. For instance, two individuals possessing the same allele will be considered
at the same distance, whether they possess one or more copies of the allele. This might be
especially problematic in organisms having a high degree of ploidy.

4.4 SNPs data

In adegenet, SNP data can be handled in two different ways. For relatively small datasets
(up to a few thousand SNPs) SNPs can be handled as usual codominant markers such as
microsatellites using genind objects. In the case of genome-wide SNP data (from hundreds
of thousands to millions of SNPs), genind objects are no longer efficient representation
of the data. In this case, we use genlight objects to store and handle information with
maximum efficiency and minimum memory requirements. See the tutorial genomics for
more information. Below, we introduce only the case of SNPs handled using genind objects.

The most convenient way to convert SNPs into a genind is using df2genind, which is
described in the previous section. Let dat be an input matrix, as can be read into R using

read.table or read.csv, with genotypes in row and SNP loci in columns.

dat <- matrix(sample(c("a","t","g","c"), 15, replace=TRUE) ,nrow=3)

rownames (dat) <- paste('"genot.", 1:3)
colnames(dat) <- 1:5

dat

## 1 2 3 4 5

S g, L Tal Tgl Tl el T
## genot .2 "g” Mot e g agn
HH# genot ) 3 ||g|| ugu ||an llall ||an

obj <- df2genind(dat, ploidy=1)

tab(obj)

#it l.al.g2.a?2.c2.g3.c3.ad4d.gd.ab.ab.t
## genot. 1 ti o 1 o0 o0 1 o0 1 O 1 O
## genot. 2 0 1 O0 1 O 1 O O 1 O 1
## genot. 3 0 1 O O0 1 O 1 O 1 1 O

obj is a genind containing the SNPs information, which can be used for further analysis
in adegenet.
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4.5 Extracting polymorphism from DNA sequences

This section only covers the cases of relatively small datasets which can be handled efficiently
using genind objects. For bigger (near full-genomes) datasets, SNPs can be extracted from
fasta files into a genlight object using fasta2genlight. See the tutorial on genomics for
more information.

DNA sequences can be read into R using ape’s read.dna (fasta and clustal formats), or
adegenet’s fasta2DNAbin for a RAM-greedy implementation (fasta alignments only). Other
options include reading data directly from GenBank using read.GenBank, or from other
public databases using the seqinr package and transforming the alignment object into a
DNAbin using as.DNAbin. Here, we illustrate this approach by re-using the example of
read.GenBank. A connection to the internet is required, as sequences are read directly
from a distant database.

library(ape)

ref <- c("U15717", "U15718", "U15719", "U15720",
"U1s721", "U15722", "U15723", "U15724")

myDNA <- read.GenBank(ref)

myDNA

## 8 DNA sequences in binary format stored in a list.

##

## All sequences of same length: 1045

##

## Labels: U15717 U15718 U15719 U15720 U15721 U16722 ...
##

## Base composition:

#it a € g t

## 0.267 0.351 0.134 0.247
class(myDNA)
## [1] "DNAbin"

myDNA <- as.matrix(myDNA)

Polymorphism can be characterized using snpposi.plot and snpposi.test: the first
plots SNP density along the alignment, the second tests whether these SNPs are randomly
distributed. For instance:

snpposi.plot (myDNA, codon=FALSE)
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Distribution of SNPs in the genome
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By default, the function differentiates nucleotide positions:

snpposi.plot (myDNA)

23



Distribution of SNPs in the genome
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In adegenet, only polymorphic loci are conserved to form a genind object. This
conversion is achieved by DNAbin2genind. This function allows one to specify a threshold for
polymorphism; for instance, one could retain only SNPs for which the second largest allele
frequency is greater than 1% (using the polyThres argument). This is achieved using:

obj <- DNAbin2genind(myDNA, polyThres=0.01)
obj

## /// GENIND OBJECT /////////

##

## // 8 individuals; 155 loci; 318 alleles; size: 83.4 Kb
##

## // Basic content

H## Otab: 8 x 318 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 2-4)
## @loc.fac: locus factor for the 318 columns of @tab
## @all .names: list of allele names for each locus

# @ploidy: ploidy of each individual (range: 1-1)
#i# Otype: codom
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# Q@call: DNAbin2genind(x = myDNA, polyThres = 0.01)

##
## // Optional content
#it - empty -

Here, out of the 1,045 nucleotides of the sequences, 318 SNPs where extracted and stored
as a genind object. Positions of the SNPs are stored as names of the loci:

head(locNames (obj))

## [1] |111H Il13|l Il26ll II31I| lI34ll ll39ll

4.6 Extracting polymorphism from proteic sequences

Alignments of proteic sequences can be exploited in adegenet in the same way as DNA
sequences (see section above). Alignments are scanned for polymorphic sites, and only
those are retained to form a genind object. Loci correspond to the position of the
residue in the alignment, and alleles correspond to the different amino-acids (AA). Aligned
proteic sequences are stored as objects of class alignment in the seqinr package [1]. See
7as.alignment for a description of this class. The function extracting polymorphic sites
from alignment objects is alignment2genind.

Its use is fairly simple. It is here illustrated using a small dataset of aligned proteic
sequences:

library(seqinr)

mase.res <- read.alignment(file=system.file("sequences/test.mase",
package="seqinr"), format = "mase")

mase.res

## $nb

## [1] 6

##

## $nam

## [1] "Langur" "Baboon" "Human" "Rat" "Cow" "Horse"

##

## $seq

## $seql[1]]

## [1] "-kifercelartlkklgldgykgvslanwvclakwesgynteatnynpgdestdygifqinsrywcnngkpgavdachis
##

## $seql[2]]

## [1] "-kifercelartlkrlgldgyrgislanwvclakwesdyntgatnynpgdqstdygifqinshywcndgkpgavnachis
##

## $seql[3]]

## [1] "-kvfercelartlkrlgmdgyrgislanwmclakwesgyntratnynagdrstdygifqinsrywcndgkpgavnachls
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##

## $seql[4]1]

## [1] "-ktyercefartlkrngmsgyygvsladwvclaghesnyntgarnydpgdqstdygifqinsrywcndgkpraknacgip
##

## $seq[[5]]

## [1] "-kvfercelartlkklgldgykgvslanwlcltkwessyntkatnynpssestdygifqinskwwcndgkpnavdgchvs
##

## $seql[6]1]

## [1] "-kvfskcelahklkagemdgfggyslanwvcmaeyesnfntrafngknangssdyglfqlnnkwwckdnkrsssnacnim
##

#it

## $com

## [1] ";empty description\n" ";\n" ";\n"
## [4] ";\n" ";\n" ";\n"
##

## attr(,"class")
## [1] "alignment"

x <- alignment2genind(mase.res)
X

## /// GENIND OBJECT /////////

H##

## // 6 individuals; 82 loci; 212 alleles; size: 51.1 Kb
#it

## // Basic content

#H @tab: 6 x 212 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 2-5)
## @loc.fac: locus factor for the 212 columns of Q@tab
#i# ©@all.names: list of allele names for each locus

#i# @ploidy: ploidy of each individual (range: 1-1)

#it Otype: codom

## @call: alignment2genind(x = mase.res)
##

## // Optional content

#Hit Qother: a list containing: com

The six aligned protein sequences (mase.res) have been scanned for polymorphic sites,
and these have been extracted to form the genind object x. Note that several settings
such as the characters corresponding to missing values (i.e., gaps) and the polymorphism
threshold for a site to be retained can be specified through the function’s arguments (see
7alignment2genind).

The names of the loci directly provides the indices of polymorphic sites:
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head(locNames (x))

## [1] ||3|| |l4l| I|5ll I|6ll l|9|l llllll
The table of polymorphic sites can be reconstructed easily by:

tabAA <- genind2df (x)
dim(tabAA)

## [1] 6 82

tabAA[, 1:20]

#i# 34569 11 12 15 16 17 18 19 21 22 24 28 30 32 33 34
## Langur i ferl r t k 1 g 1 d y k v n v 1 a k
## Baboon i fer 1l r t r 1 g 1 4 y r i n v 1 a k
## Human vferl r t r 1 g m d y r i n m 1 a k
## Rat tyerf r t r n gms y y v d v 1l a q
## Cow vferl r t k 1 g 1 4d y k v n 1 1 t k
## Horse vfsk1l h k a g e m d £f g y n v m a e

The global AA composition of the polymorphic sites is given by:

table(unlist (tabAA))

##
## a d e f g h i k 1 m n p q r s t v w y
## 35 38 16 9 33 13 27 28 31 8 44 10 26 47 36 20 42 6 23

Now that polymorphic sites have been converted into a genind object, simple distances
can be computed between the sequences. Note that adegenet does not implement specific
distances for protein sequences, we only use the simple Euclidean distance. Fancier protein
distances are implemented in R; see for instance dist.alignment in the seginr package, and
dist.ml in the phangorn package.

D <- dist(tab(x))

D

#Ht Langur Baboon Human Rat Cow
## Baboon 5.291503

## Human 6.000000 5.291503

## Rat 8.717798 8.124038 8.602325

## Cow 7.874008 8.717798 8.944272 10.392305

## Horse 11.313708 11.313708 11.224972 11.224972 11.747340
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This matrix of distances is small enough for one to interprete the raw numbers. However,
it is also very straightforward to represent these distances as a tree or in a reduced space.
We first build a Neighbor-Joining tree using the ape package:

library(ape)

tre <- nj(D)

par (xpd=TRUE)

plot(tre, type="unrooted", edge.w=2)

edgelabels (tex=round(tre$edge.length,1), bg=rgb(.8,.8,1,.8))

Baboon

Human

The best possible planar representation of these Fuclidean distances is achieved by
Principal Coordinate Analyses (PCoA), which in this case will give identical results to PCA
of the original (centred, non-scaled) data:

pcol <- dudi.pco(D, scannf=FALSE,nf=2)
s.label(pcol$li*1.1, clab=0, pch="")
textplot(pcol$lil[,1], pcol$li[,2], words=rownames(pcol$li),
cex=1.4, new=FALSE, xpd=TRUE)
title("Principal Coordinate Analysis\n-based on proteic distances-")
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4.7 Using genind/genpop constructors

genind or genpop objects are best obtained using the procedures described above. However,
one can also build new genind or genpop objects using the constructor new(). In this case,
the function must be given as main input an object corresponding to the @tab slot: a matrix
of integers with individuals in row and alleles in columns, with columns being named as
‘[marker].[allele]’. Here is an example for genpop using a dataset from ade/:

data(microsatt)
microsatt$tab[10:15,12:15]

#i# INRA32.168 INRA32.170 INRA32.174 INRA32.176
## Mtbeliard 0 0 0 1
## NDama 0 0 0 12
## Normand 1 0 0 2
## Parthenais 8 B 0 3
## Somba 0 0 0 20
## Vosgienne 2 0 0 0
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microsatt$tab contains alleles counts per populations, and can therefore be used to make
a genpop object. Moreover, column names are set as required, and row names are unique. It
is therefore safe to convert these data into a genpop using the constructor:

toto <- new('"genpop", tab=microsatt$tab)
toto

## /// GENPOP OBJECT /////////

##

## // 18 populations; 9 loci; 112 alleles; size: 28 Kb
#t

## // Basic content

#H @tab: 18 x 112 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 8-17)
#i# @loc.fac: locus factor for the 112 columns of Q@tab
H## @all.names: list of allele names for each locus

#i# @ploidy: ploidy of each individual (range: 2-2)
#it Otype: codom

## @call: .local(.0Object = .0Object, tab = ..1)
##

## // Optional content

Hit - empty -

summary (toto)

#it

## # Number of populations: 18

##

## # Number of alleles per locus:
## INRAS INRA32 INRA35 INRA63 INRA72 ETH152 ETH225 INRA16 INRAK

#Hit 8 15 11 10 17 10 14 15 12

it

## # Number of alleles per population:

#Hit Baoule Borgou BPN Charolais Holstein Jersey
#H# 39 69 51 59 52 41
## Lagunaire Limousin MaineAnjou Mtbeliard NDama Normand
#Hit 34 48 46 47 43 56
## Parthenais Somba Vosgienne ZChoa  ZMbororo Zpeul
HH 57 52 49 64 56 67
#i#t

## # Percentage of missing data:

## [1]1 0
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4.8 Exporting data

The genind class tends to become a standard in population genetics packages. As of
adegenet 2.0.0, export functions towards hierfstat have been removed, as the package now
uses genind objects as a native class. Similarly, export towards the package genetics have
been removed, as adegenet now relies on pegas for basic population genetics.

A generic way to export data is to produce a data.frame of genotypes coded by character
strings. This is done by genind2df:

obj <- genind2df (nancycats)
obj[1:5,1:5]

#it pop fca8 fca23 fca43 fcadb
## cat.1 PO1  <NA> 136146 139139 116120
## cat.2 PO1  <NA> 146146 139145 120126
## cat.3 PO1 135143 136146 141141 116116
## cat.4 PO1 133135 138138 139141 116126
## cat.b PO1 133135 140146 141145 126126

This function is flexible; for instance, one can separate alleles by any character string:

genind2df (nancycats,sep="|") [1:5,1:5]

#it pop fca8 fca23 fcad3 fcadb
## cat.1 PO1 <NA> 136]146 139]139 116|120
## cat.2 PO1 <NA> 146|146 139|145 120|126
## cat.3 PO1 135|143 136146 141|141 116]|116
## cat.4 PO1 133]135 138|138 139|141 116]126
## cat.5 PO1 133]135 140|146 141|145 126|126

Note that tabulations can be obtained as follows using "\t’ character.
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5 Basics of data analysis

5.1 Manipulating the data

Data manipulation is meant to be particularly flexible in adegenet. First, as genind and
genpop objects are basically formed by a data matrix (the @tab slot), it is natural to subset
these objects like it is done with a matrix. The [ operator does this, forming a new object

with the retained genotypes/populations and alleles:

data(microbov)
toto <- genind2genpop (microbov)

#i#

## Converting data from a genind to a genpop object...
#it

## ...done.

toto

## /// GENPOP OBJECT /////////

H##

## // 15 populations; 30 loci; 373 alleles; size: 88.9 Kb
#

## // Basic content

## @tab: 15 x 373 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 5-22)
#it @loc.fac: locus factor for the 373 columns of Q@tab
#i# ©@all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

## @call: genind2genpop(x = microbov)

##

## // Optional content

#Hit Qother: a list containing: coun breed spe

popNames (toto)

## [1] "Borgou" "Zebu" "Lagunaire"

## [4] "NDama" "Somba" "Aubrac"

## [7] "Bazadais" "BlondeAquitaine" "BretPieNoire"
## [10] "Charolais" "Gascon" "Limousin"

## [13] "MaineAnjou" "Montbeliard" "Salers"

titi <- toto[1:3,]
popNames (titi)

## [1] "Borgou" "Zebu" "Lagunaire"
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The object toto has been subsetted, keeping only the first three populations. Of course, any
subsetting available for a matrix can be used with genind and genpop objects. In addition,
we can subset loci directly using indices or logicals, in which case they refer to the output of
locNames:

nAll(titi)

## INRAG3 INRAS ETH225 ILSTSHS HELb5 HEL1 1INRA35 ETH152 INRA23

#it 9 7 12 5 11 9 7 12 13
##  ETH10 HEL9 CSSM66 INRA32 ETH3 BM2113 BM1824 HEL13 INRA37
#it 9 13 16 14 14 14 10 10 19
## BM1818 ILSTS6 MM12 CSRM60 ETH185 HAUT24 HAUT27 TGLA227 TGLA126
#it 11 13 17 12 16 13 12 15 8
## TGLA122 TGLA53 SPS115

#i#t 22 21 9

tata <- titi[,loc=c(1,3)]
tata

## /// GENPOP OBJECT /////////

#

## // 3 populations; 2 loci; 21 alleles; size: 18.1 Kb
#t

## // Basic content

## @tab: 3 x 21 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 9-12)
#i @loc.fac: locus factor for the 21 columns of @tab
#it @all.names: list of allele names for each locus
#H @ploidy: ploidy of each individual (range: 2-2)
#it Otype: codom

## @call: .local(x = x, i =1, j = j, loc = ..1, drop = drop)
HH#

## // Optional content

#it Q@other: a list containing: coun breed spe

nAll(tata)

## INRA63 ETH225
#i# 9 12

Alternatively, one can subset loci using their explicit name:
locNames (titi)

## [1] "INRA63" "INRA5" "ETH225" "ILSTS5" "HEL5" "HEL1" "INRA35"
## [8] "ETH152" "INRA23" "ETH10" "HELO" "CSSM66" "INRA32" "ETH3"

33



## [15] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"
## [22] "CSRM60O" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
## [29] "TGLA53" "SPS115"

hel5 <- titil[,loc="HEL5"]
helb

## /// GENPOP OBJECT /////////

#t

## // 3 populations; 1 locus; 11 alleles; size: 16.5 Kb

H##

## // Basic content

H# @tab: 3 x 11 matrix of allele counts

## @loc.n.all: number of alleles per locus (range: 11-11)
## @loc.fac: locus factor for the 11 columns of @tab

#H ©@all.names: list of allele names for each locus

#H @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

#i# @call: .local(x = x, i =1i, j = j, loc = "HELS", drop = drop)
#t

## // Optional content

#it Q@other: a list containing: coun breed spe

locNames (hel5)

## [1] "HEL5"

To simplify the task of separating data by marker systematically, the function seploc
can be used. It returns a list of objects (optionnaly, of data matrices), each corresponding
to a marker:

data(nancycats)
sepCats <- seploc(nancycats)
class(sepCats)

## [1] "list"

names (sepCats)

## [1] "fca8" "fca23" "fcad3" "fcadb" "fca77" "fca78" "fca90" "fca96" "fca37"
sepCats$fcadb

## /// GENIND OBJECT /////////

##
## // 237 individuals; 1 locus; 9 alleles; size: 31.3 Kb
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#it
## // Basic content
#t Q@tab: 237 x 9 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 9-9)
## @loc.fac: locus factor for the 9 columns of Q@tab
## @all .names: list of allele names for each locus

#i# O@ploidy: ploidy of each individual (range: 2-2)

#Hit @type: codom

i Q@call: .local(x = x)

##

## // Optional content

#it @pop: population of each individual (group size range: 9-23)
Hit Qother: a list containing: xy

identical(tab(sepCats$fcadb), tab(nancycats[,loc="fcad5"]))
## [1] TRUE
The object sepCats$fcadb only contains data of the marker fcadb.

Following the same idea, seppop allows one to separate genotypes in a genind object by
population. For instance, we can separate genotype of cattles in the dataset microbov by
breed:

data(microbov)

obj <- seppop(microbov)
class(obj)

## [1] "list"

names (obj)

## [1] "Borgou" "Zebu" "Lagunaire"

## [4] "NDama" "Somba" "Aubrac"

## [7] "Bazadais" "BlondeAquitaine" "BretPieNoire"
## [10] "Charolais" "Gascon" "Limousin"

## [13] "MaineAnjou" "Montbeliard" "Salers"
obj$Borgou

## /// GENIND OBJECT /////////

H##

## // 50 individuals; 30 loci; 373 alleles; size: 135.4 Kb
#

## // Basic content

35



#Hit @tab: 50 x 373 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 5-22)

## @loc.fac: locus factor for the 373 columns of Qtab

Hit @all.names: list of allele names for each locus

#H @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

#i# @call: .local(x = x, i =1, j = j, treatOther = ..1, quiet = ..2, drop = drop)
##

## // Optional content

#it @pop: population of each individual (group size range: 50-50)
#i#t Q@other: a list containing: coun breed spe

The returned object obj is a list of genind objects each containing genotypes of a given breed.

A last, rather vicious trick is to separate data by population and by marker. This is easy
using lapply; one can first separate population then markers, or the contrary. Here, we
separate markers inside each breed in obj:

obj <- lapply(obj,seploc)
names (obj)

## [1] "Borgou" "Zebu" "Lagunaire"

## [4] "NDama" "Somba" "Aubrac"

## [7] "Bazadais" "BlondeAquitaine" "BretPieNoire"
## [10] "Charolais" "Gascon" "Limousin"

## [13] "MaineAnjou" "Montbeliard" "Salers"
class(obj$Borgou)

## [1] "list"

names (obj$Borgou)

## [1] "INRA63" "INRA5" "ETH225" "ILSTS5" "HEL5" "HEL1" "INRA35"
## [8] "ETH152" "INRA23" "ETH10" "HELO" "CSSM66" "INRA32" "ETH3"
## [15] "BM2113" "BM1824" "HEL13" "INRA37" "BM1818" "ILSTS6" "MM12"

## [22] "CSRM60O" "ETH185" "HAUT24" "HAUT27" "TGLA227" "TGLA126" "TGLA122"
## [29] "TGLAB3" "SPS115"

obj$Borgou$INRAG3

## /// GENIND OBJECT /////////

H##

## // 50 individuals; 1 locus; 9 alleles; size: 12.9 Kb
##

## // Basic content
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#Hit @tab: 50 x 9 matrix of allele counts

#H @loc.n.all: number of alleles per locus (range: 9-9)
#it Q@loc.fac: locus factor for the 9 columns of Q@tab

#it ©@all .names: list of allele names for each locus

#H @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

## @call: .local(x = x)

##

## // Optional content

#it @pop: population of each individual (group size range: 50-50)
#Ht Q@other: a list containing: coun breed spe

For instance, obj$Borgou$INRA63 contains genotypes of the breed Borgou for the marker
INRAG3.

Lastly, one may want to pool genotypes in different datasets, but having the same markers,
into a single dataset. This is more than just merging the @tab components of all datasets,
because alleles can differ (they almost always do) and markers are not necessarily sorted
the same way. The function repool is designed to avoid these problems. It can merge any
genind provided as arguments as soon as the same markers are used. For instance, it can be
used after a seppop to retain only some populations:

obj <- seppop(microbov)
names (obj)

## [1] "Borgou" "Zebu" "Lagunaire"

## [4] "NDama" "Somba" "Aubrac"

## [7] "Bazadais" "BlondeAquitaine" "BretPieNoire"
## [10] "Charolais" "Gascon" "Limousin"

## [13] "MaineAnjou" "Montbeliard" "Salers"

newObj <- repool(obj$Borgou, obj$Charolais)
newObj

## /// GENIND OBJECT /////////

##t

## // 105 individuals; 30 loci; 295 alleles; size: 175.8 Kb
##

## // Basic content

H# @tab: 105 x 295 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 4-17)
#H @loc.fac: locus factor for the 295 columns of Q@tab
## ©@all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

## Otype: codom
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# Qcall: repool(obj$Borgou, obj$Charolais)

##

## // Optional content

#it @pop: population of each individual (group size range: 50-55)

popNames (newObj)

## [1] "Borgou" "Charolais"
Done !

Note that the content of @other can be processed during the conversion from genind to
genpop if the argument process.other is set to TRUE. Only vectors of a length, or matrices
with a number of rows matching the number individuals will be processed. The way they
are processed is defined by a function passed as the argument other.action (defaulting to
'mean’). Let us illustrate this using sim2pop:

data(sim2pop)
sim2pop

## /// GENIND OBJECT /////////

##

## // 130 individuals; 20 loci; 241 alleles; size: 184.5 Kb
##

## // Basic content

#it Otab: 130 x 241 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 7-17)
#i#t @loc.fac: locus factor for the 241 columns of Qtab

## O@all.names: list of allele names for each locus

#i# @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

#H @call: old2new(object = sim2pop)

##

## // Optional content

#i#t @pop: population of each individual (group size range: 30-100)
Hit Qother: a list containing: xy

nInd(sim2pop)
## [1] 130
head (other (sim2pop) $xy)

## X y
## [1,] 35.11291 99.595997
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## [2,] 22.57033 6.682107
## [3,] 76.99371 51.900514
## [4,] 44.31948 18.037868
## [5,] 94.40902 82.948821
## [6,] 51.29493 25.007193

dim(other (sim2pop) $xy)
## [1] 130 2

The component sim2pop@other$xy contains spatial coordinates of individuals from 2
populations.

other (genind2genpop (sim2pop, process.other=TRUE))

#it

## Converting data from a genind to a genpop object...
#i#t

## ...done.

## $xy

#it X y

## PO1 58.43405 48.37065

## P02 19.06501 61.00044

In this case, numeric vectors with a length corresponding to the number of individuals
will we averaged per groups; note that any other function than mean can be used by
providing any function to the argument other.action. Matrices with a number of rows
corresponding to the number of individuals are processed similarly.

5.2 Using summaries

Both genind and genpop objects have a summary providing basic information about data.
Informations are both printed and invisibly returned as a list.

toto <- summary(nancycats)

#it

## # Total number of genotypes: 237

#i#

## # Population sample sizes:

## PO1 PO2 PO3 P04 P05 PO6 PO7 PO8 PO9 P10 P11 P12 P13 P14 P15 P16 P17
## 10 22 12 23 15 11 14 10 9 11 20 14 13 17 11 12 13
#it

## # Number of alleles per locus:
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## fca8 fca23 fcad43 fcad4b fca77 fca78 fca90 fca96 fca37

## 16 11 10 9 12 8 12 12 18

##

## # Number of alleles per population:

## PO1 PO2 PO3 P04 PO5 P06 PO7 PO8 P09 P10 P11 P12 P13 P14 P15 P16 P17
## 36 53 50 67 48 56 42 54 43 46 70 52 44 61 42 40 35
##

## # Percentage of missing data:

## [1] 2.344116

##

## # Observed heterozygosity:

## fca8 fca23 fcad3 fcadb fca’r fca78 fca90
## 0.6682028 0.6666667 0.6793249 0.7083333 0.6329114 0.5654008 0.6497890
H## fca96 fcad7

## 0.6184211 0.4514768

##

## # Expected heterozygosity:

## fca8 fca23 fcad3 fcadb fca’7 fca78 fca90

## 0.8657224 0.7928751 0.7953319 0.7603095 0.8702576 0.6884669 0.8157881
#it fca96 fca37
## 0.7603493 0.6062686

names (toto)

## [1] "N "pop.eff"  "loc.n.all" "pop.nall" "NA.perc"  "Hobs"
## [7] "Hexp"

par (mfrow=c(2,2))

plot(toto$pop.eff, toto$pop.nall, xlab="Colonies sample size",
ylab="Number of alleles",main="Alleles numbers and sample sizes",
type="n")

text (toto$pop.eff,toto$pop.nall,lab=names(toto$pop.eff))

barplot(toto$loc.n.all, ylab="Number of alleles",
main="Number of alleles per locus")

barplot (toto$Hexp-toto$Hobs, main="Heterozygosity: expected-observed",
ylab="Hexp - Hobs")

barplot(toto$pop.eff, main="Sample sizes per population",
ylab="Number of genotypes",las=3)
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Is mean observed H significantly lower than mean expected H 7
bartlett.test(list(toto$Hexp,toto$Hobs))

#it

## Bartlett test of homogeneity of variances

#i#t

## data: list(toto$Hexp, toto$Hobs)

## Bartlett's K-squared = 0.046962, df = 1, p-value = 0.8284

t.test(toto$Hexp, toto$Hobs,pair=T,var.equal=TRUE,alter="greater")

##

## Paired t-test

##

## data: toto$Hexp and toto$Hobs

## t = 8.3294, df = 8, p-value = 1.631e-05

## alternative hypothesis: true difference in means is greater than O
## O5 percent confidence interval:
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## 0.1134779 Inf

## sample estimates:

## mean of the differences
Hit 0.1460936

Yes, it is.

5.3 Testing for Hardy-Weinberg equilibrium

As of version 2.0.0, adegenet is designed to work alongside a number of other packages,
especially pegas and hierfstat for a number of classical population genetics methods. The
former function HWE. test.genind has consequently been removed, and replaced by pegas’s
hw.test, which performs one test per locus:

library(pegas)

data(nancycats)

cats.hwt <- hw.test(nancycats, B=0)
cats.hwt

## chi”2 df Pr(chi~2 >)
## fca8 395.80006 120 0.000000e+00
## fca23 239.34221 55 0.000000e+00
## fcad3 434.33397 45 0.000000e+00
## fcadb 66.11849 36 1.622163e-03
## fca77 270.52066 66 0.000000e+00
## fca78 402.80002 28 0.000000e+00
## fca90 217.19836 66 0.000000e+00
## fca96 193.36764 66 1.965095e-14
## fca37 291.00731 153 1.209777e-10

Note that B=0 is used for the parametric version; larger numbers will indicate the number
of permutations to use for a Monte-Carlo version.

5.4 Measuring and testing population structure (a.k.a F statistics)

Population structure is traditionally measured and tested using F' statistics, in particular
Fy. As of version 2.0.0, adegenet relies on hierfstat and pegas for most F' statistics. Note
that some of these features might be part of the current devel version of hierfstat, which can
be installed by:

library(devtools)
install_github("jgx65/hierfstat")

Can we find any population structure in the cat colonies from Nancy? The basic F'
statistics are provided by:
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library("hierfstat")
fstat(nancycats)

#it pop Ind

## Total 0.08494959 0.1952946
## pop  0.00000000 0.1205890

This table provides the three F statistics F'st (pop/total), Fit (Ind/total), and Fis
(ind/pop). These are overall measures which take into account all genotypes and all loci.

For more detail, pegas provides estimates by locus:

library(pegas)
Fst(as.loci(nancycats))

#i#t Fit Fst Fis
## fca8 0.2447420 0.10146648 0.159454807
## fca23 0.1646295 0.06746762 0.104191391
## fcadld 0.1514487 0.06893755 0.088620458
## fcadb 0.1010807 0.09792456 0.003498722
## fca77 0.2790495 0.10036588 0.198618075
## fca78 0.1842490 0.07025915 0.122603911
## f£ca90 0.2098744 0.09168833 0.130116240
## fca96 0.2034755 0.10744024 0.107595351
## fca3d7 0.2604033 0.06985321 0.204860244

Are these values significant? This question can be addressed using the G-statistic test
[3]; it is implemented for genind objects and produces a randtest object (package aded).

Gtest <- gstat.randtest(nancycats,nsim=99)
Gtest

#it
#H#
##
#it
#Ht
#t
##
##
#it
#it
#t

Monte-Carlo test

Call: gstat.randtest(x = nancycats, nsim = 99)

Observation: 3372.926
Based on 99 replicates
Simulated p-value: 0.01

Alternative hypothesis: greater

Std.0Obs Expectation Variance
29.13043 1741.19292 3137.64697

plot(Gtest)
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Finally, pairwise F'st is frequently used as a measure of distance between populations.
The function pairwise.fst computes Nei’s estimator [11] of pairwise F'st, defined as:

Hy — (natl(A) + npHy(B))/(na + np)
Ht

where A and B refer to the two populations of sample size n4 and ng and respective expected
heterozygosity Hs(A) and Hy(B), and H; is the expected heterozygosity in the whole dataset.
For a given locus, expected heterozygosity is computed as 1 — Y p?, where p; is the frequency
of the ith allele, and the ) represents summation over all alleles. For multilocus data, the
heterozygosity is simply averaged over all loci. These computations are achieved for all pairs
of populations by the function pairwise.fst; we illustrate this on a subset of individuals of
nancycats (computations for the whole dataset would take a few tens of seconds):

Fst(A,B) =

matFst <- pairwise.fst(nancycats[1:50,])
matFst

#it 1 2 3
## 2 0.08018500

## 3 0.07140847 0.08200880

## 4 0.08163151 0.06512457 0.04131227
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The resulting matrix is Euclidean when there are no missing values:

is.euclid(matFst)

## [1] TRUE

It can therefore be used in a Principal Coordinate Analysis (which requires Euclideanity),
used to build trees, etc.

5.5 Estimating inbreeding

Inbreeding refers to an excess of homozygosity in a given individual due to the mating of
genetically related parents. This excess of homozygosity is due to the fact that there are
non-negligible chances of inheriting two identical alleles from a recent common ancestor.
Inbreeding can be associated to a loss of fitness leading to " inbreeding depression”. Typically,
loss of fitness is caused by recessive deleterious alleles which have usually low frequency in
the population, but for which inbred individuals are more likely to be homozygotes.

The inbreeding coefficient F' is defined as the probability that at a given locus, two
identical alleles have been inherited from a common ancestor. In the absence of inbreeding,
the probability of being homozygote at one loci is (for diploid individuals) simply Y, p? where
i indexes the alleles and p; is the frequency of allele . This can be generalized incorporating
F as:

p(homozygote) = F + (1 — F) pr
and even more generally, for any ploidy 7:

p(homozygote) = F + (1 — F) pr

This therefore allows for computing the likelihood of a given state (homozygote /heterozygote)
in a given genotype (log-likelihood are summed across loci for more than one marker).

This estimation is achieved by inbreeding. Depending on the value of the argument
res.type, the function returns a sample from the likelihood function (res.type=’sample’)
or the likelihood function itself, as a R function (res.type=’function’). While likelihood
functions are quickly obtained and easy to display graphically, sampling from the distributions
is more computer intensive but useful to derive summary statistics of the distributions. Here,
we illustrate inbreeding using the microbov dataset, which contains cattle breeds genotypes
for 30 microsatellites; to focus on breed Salers only, we use seppop:

data(microbov)

sal <- seppop(microbov)$Salers
sal
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## /// GENIND OBJECT /////////

##

## // 50 individuals; 30 loci; 373 alleles; size: 135.4 Kb
#it

## // Basic content

## @tab: 50 x 373 matrix of allele counts

#it @loc.n.all: number of alleles per locus (range: 5-22)
## @loc.fac: locus factor for the 373 columns of @tab
#i# ©@all.names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

HH Otype: codom

#it @call: .local(x = x, i =1, j = j, treatOther = ..1, quiet = ..2, drop = drop)

it

## // Optional content

#it Q@pop: population of each individual (group size range: 50-50)
#Hit Qother: a list containing: coun breed spe

We first compute the mean inbreeding for each individual, and plot the resulting
distribution:

temp <- inbreeding(sal, N=100)
class(temp)

## [1] "list"
head (names (temp) )

## [1] "FRBTSAL9087" "FRBTSAL9088" "FRBTSAL9089" "FRBTSAL9090" "FRBTSAL9091"
## [6] "FRBTSAL9093"

head (temp[[1]],20)

## [1] 0.03823566 0.18899420 0.39544521 0.05284852 0.07896979 0.12897831
## [7] 0.13251222 0.21017336 0.14031640 0.04799293 0.03170087 0.02844077
## [13] 0.05679209 0.02023472 0.26343299 0.04361464 0.01854812 0.17355401
## [19] 0.14418046 0.02332049

temp is a list of values sampled from the likelihood distribution of each individual; means
values are obtained for all individuals using sapply:

Fbar <- sapply(temp, mean)
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hist(Fbar, col="firebrick", main="Average inbreeding in Salers cattles")

Average inbreeding in Salers cattles
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We can see that some individuals (actually, a single one) have higher inbreeding (>0.4).
We can recompute inbreeding for this individual, asking for the likelihood function to be
returned:

which(Fbar>0.4)

## FRBTSALO266
#it 37

F <- inbreeding(sal, res.type="function") [which(Fbar>0.4)]
F

## $FRBTSAL9266
## function (F)

## {
## args <- lapply(as.list(match.call())[-1L], eval, parent.frame())
#i names <- if (is.null(names(args)))
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# character (length(args))

## else names(args)

## dovec <- names %inJ% vectorize.args

## do.call("mapply", c(FUN = FUN, args[dovec], MoreArgs = list(args[!dovec]),
## SIMPLIFY = SIMPLIFY, USE.NAMES = USE.NAMES))

## }

## <environment: 0x901de80>

The output object F can seem a bit cryptic: it is an function embedded within a hidden
environment. This does not matter, however, since it is easily represented:

plot (FSFRBTSAL9266, main=paste("Inbreeding of individual",names(F)),
xlab="Inbreeding (F)", ylab="Probability density")

Inbreeding of individual FRBTSAL9266
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Indeed, this individual shows subsequent inbreeding, with about 50% chances of being
homozygote through inheritance from a common ancestor of its parents.
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6

6.1

Multivariate analysis

General overview

Multivariate analysis consists in summarising a strongly multivariate information into a few
synthetic variables. In genetics, such approaches are useful to get a simplified picture of
the genetic diversity obersved amongst individuals or populations. A review of multivariate
analysis in population genetics can be found in [7]. Here, we aim at providing an overview
of some applications using methods implemented in ade4 and adegenet.

Useful functions include:

scaleGen (adegenet): centre/scale allele frequencies and replaces missing data; useful,
among other things, before running a principal component analysis (PCA).

dudi.pca (ade4): implements PCA; can be used on transformed allele frequencies of
individuals or populations.

dudi.ca (ade4): implements Correspondance Analysis (CA); can be used on raw allele
counts of populations (@tab slot in genpop objects).

dist.genpop (adegenet): implements 5 pairwise genetic distances between populations

pairwise.fst (adegenet): implements pairwise Fsr, which is also a Euclidean distance
between populations.

dist (stats): computes pairwise distances between multivariate observations; can be
used on raw or transformed allele frequencies.

dudi.pco (ade): implements Principal Coordinates Analysis (PCoA); this methods
finds synthetic variables which summarize a Euclidean distance matrix as best as
possible; can be used on outputs of dist, dist.genpop, and pairwise.fst.

is.euclid (ade): tests whether a distance matrix is Euclidean, which is a pre-requisite
of PCoA.

cailliez (ade4): renders a non-Euclidean distance matrix Euclidean by adding a
constant to all entries.

dapc (adegenet): implements the Discriminant Analysis of Principal Components
(DAPC [8]), a powerful method for the analysis of population genetic structures; see
dedicated tutorial (dapc).

sPCA (adegenet): implements the spatial Principal Component Analysis (sPCA [5]), a
method for the analysis of spatial genetic structures; see dedicated tutorial (dapc).

glPca (adegenet): implements PCA for genome-wide SNP data stored as genlight
objects; see dedicated tutorial (genomics).
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Besides the procedures themselves, graphic functions are also often of the utmost
importance; these include:

scatter (ade/,adegenet): generic function to display multivariate analyses; in practice,
the most useful application for genetic data is the one implemented in adegenet for
DAPC results.

s.label (ade4): function used for basic display of principal components.

loadingplot (adegenet): function used to display the loadings (i.e., contribution to a
given structure) of alleles for a given principal component; annotates and returns the
most contributing alleles.

s.class (ade4): displays two quantitative variables with known groups of observations,
using inertia ellipses for the groups; useful to represent principal components when
groups are known.

s.chull (ade4): same as s. class, except convex polygons are used rather than ellipses.

s.value (ade4): graphical display of a quantitative variable distributed over a two-
dimensional space; useful to map principal components or allele frequencies over a
geographic area.

colorplot (adegenet): graphical display of 1 to 3 quantitative variables distributed over
a two-dimensional space; useful for combined representations of principal components
over a geographic area. Can also be used to produce color versions of traditional
scatterplots.

transp (adegenet): auxiliary function making colors transparent.

num2col (adegenet): auxiliary function transforming a quantitative variable into colors
using a given palette.

assignplot (adegenet): specific plot of group membership probabilities for DAPC; see
dedicated tutorial (dapc).

compoplot (adegenet): specific 'STRUCTURE-like’ plot of group membership
probabilities for DAPC; see dedicated tutorial (dapc).

add.scatter (ade/): add inset plots to an existing figure.

add.scatter.eig (ade/): specific application of add.scatter to add barplots of
eigenvalues to an existing figure.

In the sections below, we briefly illustrate how these tools can be combined to extract
information from genetic data.
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6.2 Performing a Principal Component Analysis on genind objects

The tables contained in genind objects can be submitted to a Principal Component Analysis
(PCA) to seek a summary of the genetic diversity among the sampled individuals. Such
analysis is straightforward using adegenet to prepare data and ade4 for the analysis per
se. One has first to replace missing data (NAs) and transform the allele frequencies in an
appropriate way. These operations are achieved by scaleGen. NAs are replaced by the mean
allele frequency; different scaling options are available (argument method), but in general
centring is sufficient since allele frequencies have inherently comparable variances.

data(microbov)
sum(is.na(microbov$tab))

## [1] 6325

There are 6325 missing data. They will all be replaced by scaleGen:

X <- scaleGen(microbov, NA.method="mean"
class(X)

## [1] "matrix"
dim(X)

## [1] 704 373
X[1:5,1:5]

#it INRA63.167 INRA63.171 INRA63.173 INRA63.175 INRA63.177
## AFBIBOR9503 -0.03801312 -0.05379728 -0.101009 -1.061893 -0.8769237
## AFBIBOR9504 -0.03801312 -0.05379728 -0.101009 -1.061893 -0.8769237
## AFBIBOR9505 -0.03801312 -0.05379728 -0.101009 -1.061893 0.5498659
## AFBIBOR9506 -0.03801312 -0.05379728 -0.101009 -1.061893 -0.8769237
## AFBIBOR9507 -0.03801312 -0.05379728 -0.101009 -1.061893 0.5498659

Note that alternatively, we could have used na.replace to replace missing data, and then
left the centring/scaling to dudi.pca.

The analysis can now be performed. We disable the scaling in dudi.pca, which would
erase the scaling choice made earlier in scaleGen. Note: in practice, retained axes can be

chosen interactively by removing the arguments scannf=FALSE,nf=3.

pcal <- dudi.pca(X,cent=FALSE,scale=FALSE, scannf=FALSE,nf=3)
barplot(pcal$eig[1:50] ,main="PCA eigenvalues", col=heat.colors(50))
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PCA eigenvalues
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pcal

##
##
#it
#it
#Ht
##
##
#it
#it
#t
##
#H#
#it
#it
#Ht
#Hit

Duality diagramm
class: pca dudi

$call: dudi.pca(df = X, center = FALSE, scale = FALSE, scannf = FALSE,

nf = 3)

$nf: 3 axis-components saved

$rank: 343

eigen values: 17.04 9.829 6.105 4.212 3.887 ...
vector length mode content

1 $cw 373 numeric column weights

2 $1lw 704 numeric row weights

3 $eig 343 numeric eigen values
data.frame nrow ncol content

1 $tab 704 373 modified array

2 $1i 704 3 row coordinates
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## 3 $11 704 3 row normed scores
## 4 $co Sre 8 column coordinates
## 5 $ci SSHEES) column normed scores

## other elements:

cent norm

The output object pcal is a list containing various information; of particular interest are:

e $eig: the eigenvalues of the analysis, indicating the amount of variance represented by
each principal component (PC).

o $1i:

the principal components of the analysis;

these are the synthetic variables

summarizing the genetic diversity, usually visualized using scatterplots.

e $c1: the allele loadings, used to compute linear combinations forming the PCs; squared,

they represent the contribution to each PCs.

The basic scatterplot for this analysis can be obtained by:

s.label(pcal$li)

title("PCA of microbov dataset\naxes 1-2")

add.scatter.eig(pcal$eig[1:20],

3,1,2)
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However, this figure can largely be improved. First, we can use s.class to represent both
the genotypes and inertia ellipses for populations.

s.class(pcal$li, pop(microbov))
title("PCA of microbov dataset\naxes 1-2")
add.scatter.eig(pcal$eig[1:20], 3,1,2)

PCA of microbov dataset
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Eigenvalues

This plane shows that the main structuring is between African an French breeds, the second
structure reflecting genetic diversity among African breeds. The third axis reflects the
diversity among French breeds:

s.class(pcal$li,pop(microbov) ,xax=1,yax=3,sub="PCA 1-3", csub=2)

title("PCA of microbov dataset\naxes 1-3")
add.scatter.eig(pcal$eig[1:20] ,nf=3,xax=1,yax=3)
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RBCA of microbov dataset
axes 1-3

Overall, all breeds seem well differentiated.

However, we can yet improve these scatterplots, which are fortunately easy to customize.
For instance, we can remove the grid, choose different colors for the groups, use larger dots
and transparency to better assess the density of points, and remove internal segments of the
ellipses:

col <- funky(15)

s.class(pcal$li, pop(microbov),xax=1,yax=3, col=transp(col,.6), axesell=FALSE,
cstar=0, cpoint=3, grid=FALSE)
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Let us now assume that we ignore the group memberships. We can still use color in an
informative way. For instance, we can recode the principal components represented in the
scatterplot on the RGB scale:

colorplot(pcal$li, pcal$li, transp=TRUE, cex=3, xlab="PC 1", ylab="PC 2")
title("PCA of microbov dataset\naxes 1-2")
abline(v=0,h=0,col="grey", 1lty=2)
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PCA of microbov dataset
axes 1-2

PC2

-10

PC1

Colors are based on the first three PCs of the PCA, recoded respectively on the red, green,
and blue channel. In this figure, the genetic diversity is represented in two complementary
ways: by the distances (further away = more genetically different), and by the colors (more
different colors = more genetically different).

We can represent the diversity on the third axis similarly:
colorplot(pcal$lifc(1,3)], pcal$li, transp=TRUE, cex=3, xlab="PC 1", ylab="PC 3")

title("PCA of microbov dataset\naxes 1-3")
abline(v=0,h=0,col="grey", 1lty=2)
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PCA of microbov dataset
axes 1-3

PC3

PC1

6.3 Performing a Correspondance Analysis on genpop objects

Being contingency tables, the @tab slot in genpop objects can be submitted to a
Correspondance Analysis (CA) to seek a typology of populations. The approach is very
similar to the previous one for PCA.

data(microbov)
obj <- genind2genpop (microbov)

##

## Converting data from a genind to a genpop object...
##

## ...done.

cal <- dudi.coa(tab(obj),scannf=FALSE,nf=3)
barplot(cal$eig,main="Correspondance Analysis eigenvalues",
col=heat.colors(length(cal$eig)))
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Correspondance Analysis eigenvalues
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Now we display the resulting typology using a basic scatterplot:

0.10 0.15 0.20 0.25
| | | |

0.05
|

0.00

s.label(cal$li, sub="CA 1-2",csub=2)
add.scatter.eig(cal$eig,nf=3,xax=1,yax=2,posi="bottomright")
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The same graph is derived for the axes 2-3:

s.label(cal$li,xax=2,yax=3,lab=popNames(obj),sub="CA 1-3",csub=2)
add.scatter.eig(cal$eig,nf=3,xax=2,yax=3,posi="topleft")
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Eigenvalues d=0.5

[MaineAnjou

Charolais
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\Dams Borgou]
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CA1-3

As in the PCA above, axes are to be interpreted separately in terms of continental
differentiation, and between-breeds diversity. Importantly, as in any analysis carried out
at a population level, all information about the diversity within populations is lost in this
analysis. See the tutorial on DAPC for an individual-based approach which is nontheless
optimal in terms of group separation (dapc).

Note that as an alternative, wordcloud can be used to avoid overlaps in labels:

library(wordcloud)

set.seed (1)

s.label(cal$li*1.2, sub="CA 1-2",csub=2, clab=0, cpoint="")

textplot(cal$li[,1], cal$li[,2], words=popNames(obj),
cex=1.4, new=FALSE, xpd=TRUE)

add.scatter.eig(cal$eig,nf=3,xax=1,yax=2,posi="bottomright")
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Eigenvalues
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CA1-2

However, only general trends can be interpreted: labels positions are randomised to avoid
overlap, so they no longer accurately position populations on the factorial axes.
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7 Spatial analysis

The R software probably offers the largest collection of spatial methods among statistical
software. Here, we briefly illustrate two methods commonly used in population genetics.
Spatial multivariate analysis is covered in a dedicated tutorial; see spca tutorial for more
information.

7.1 Isolation by distance
7.1.1 Testing isolation by distance

Isolation by distance (IBD) is tested using Mantel test between a matrix of genetic distances
and a matrix of geographic distances. It can be tested using individuals as well as populations.
This example uses cat colonies from the city of Nancy. We test the correlation between
Edwards’ distances and Euclidean geographic distances between colonies.

data(nancycats)
toto <- genind2genpop(nancycats)

##

## Converting data from a genind to a genpop object...
##

## ...done.

Dgen <- dist.genpop(toto,method=2)
Dgeo <- dist(nancycats$other$xy)
ibd <- mantel.randtest(Dgen,Dgeo)
ibd

## Monte-Carlo test

## Call: mantel.randtest(ml = Dgen, m2 = Dgeo)
##

## Observation: 0.00492068

##

## Based on 999 replicates

## Simulated p-value: 0.488

## Alternative hypothesis: greater

##

#Hit Std.0Obs Expectation Variance
## 0.018023759 0.002993049 0.011438193

plot(ibd)
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The original value of the correlation between the distance matrices is represented by the dot,
while histograms represent permuted values (i.e., under the absence of spatial structure).
Significant spatial structure would therefore result in the original value being out of the
reference distribution. Here, isolation by distance is clearly not significant.

Let us provide another example using a dataset of individuals simulated under an IBD
model:

data(spcalllus)

x <- spcalllus$dat2B

Dgen <- dist(x$tab)

Dgeo <- dist(other(x)$xy)

ibd <- mantel.randtest(Dgen,Dgeo)
ibd

## Monte-Carlo test

## Call: mantel.randtest(ml = Dgen, m2 = Dgeo)
##

## Observation: 0.1267341
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##

## Based on 999 replicates

## Simulated p-value: 0.002

## Alternative hypothesis: greater

##

#Hit Std.0bs Expectation Variance
## 3.533869077 -0.002448621 0.001336312

plot(ibd)
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This time there is a clear isolation by distance pattern.

7.1.2 Cline or distant patches?

The correlation between genetic and geographic distances can occur under a range of different
biological scenarios. Classical IBD would result in continuous clines of genetic differentiation
and cause such correlation. However, distant and differentiated populations would also result
in such a pattern. These are slightly different processes and we would like to be able to
disentangle them. A very simple first approach is simply plotting both distances:
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plot(Dgeo, Dgen)
abline(1m(Dgen~Dgeo), col="red",lty=2)
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Most of the time, simple scatterplots fail to provide a good picture of the data as the density
of points in the scatterplot is badly displayed. Colors can be used to provide better (and
prettier) plots. Local density is measured using a 2-dimensional kernel density estimation
(kde2d), and the results are displayed using image; colorRampPalette is used to generate a

customized color palette:

library (MASS)
dens <- kde2d(Dgeo,Dgen, n=300)

myPal <- colorRampPalette(c("white","blue","gold", "orange", "red"))

plot(Dgeo, Dgen, pch=20,cex=.5)

image(dens, col=transp(myPal(300),.7), add=TRUE)
abline(1m(Dgen~Dgeo) )

title("Isolation by distance plot")
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Isolation by distance plot
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The scatterplot clearly shows one single consistent cloud of point, without discontinuities
which would have indicated patches. This is reassuring, since the data were actually simulated
under an IBD (continuous) model.

7.2 Using Monmonier’s algorithm to define genetic boundaries

Monmonier’s algorithm [10] was originally designed to find boundaries of maximum
differences between contiguous polygons of a tesselation. As such, the method was basically
used in geographical analysis. More recently, [9] suggested that this algorithm could be
employed to detect genetic boundaries among georeferecend genotypes (or populations). This
algorithm is implemented using a more general approach than the initial one in adegenet.
Instead of using Voronoi tesselation as in the original version, the functions monmonier
and optimize.monmonier can handle various neighbouring graphs such as Delaunay
triangulation, Gabriel’s graph, Relative Neighbours graph, etc. These graphs define spatial
connectivity among locations (of genotypes or populations), with couple of locations
being neighbours (if connected) or not. Another information is given by a set of markers
which define genetic distances among these ’points’. The aim of Monmonier’s algorithm
is to find the path through the strongest genetic distances between neighbours. A more
complete description of the principle of this algorithm will be found in the documentation of
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monmonier. Indeed, the very purpose of this tutorial is simply to show how it can be used
on genetic data.

Let’s take the example from the function’s manpage and detail it. The dataset used is
sim2pop.

data(sim2pop)
sim2pop

## /// GENIND OBJECT /////////

##

## // 130 individuals; 20 loci; 241 alleles; size: 184.5 Kb
##

## // Basic content

#Hit Otab: 130 x 241 matrix of allele counts

#i# @loc.n.all: number of alleles per locus (range: 7-17)
#i# Q@loc.fac: locus factor for the 241 columns of Q@tab

#it ©@all .names: list of allele names for each locus

## @ploidy: ploidy of each individual (range: 2-2)

#it Otype: codom

#H @call: old2new(object = sim2pop)

##

## // Optional content

#it @pop: population of each individual (group size range: 30-100)

#it Q@other: a list containing: xy
summary (sim2pop$pop)

## P01 PO2

## 100 30

temp <- sim2pop$pop

levels(temp) <- c(3,5)

temp <- as.numeric(as.character(temp))

plot (sim2pop$other$xy,pch=temp,cex=1.5,xlab="x"',ylab="'y"')
legend ("topright",leg=c("Pop A", "Pop B"),pch=c(3,5))
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There are two sampled populations in this dataset, with inequal sample sizes (100 and 30).
Twenty microsatellite-like loci are available for all genotypes (no missing data). monmonier
requires several arguments to be specified:

args (monmonier)

## function (xy, dist, cn, threshold = NULL, bd.length = NULL, nrun = 1,

#it skip.local.diff = rep(0O, nrun), scanthres = is.null(threshold),
# allowLoop = TRUE)
## NULL

The first argument (xy) is a matrix of geographic coordinates, already stored in sim2pop.
Next argument is an object of class dist, which is the matrix of pairwise genetic distances.
For now, we will use the classical Euclidean distance between allelic profiles of the individuals.
This is obtained by:

D <- dist(sim2pop$tab)

The next argument (cn) is a connection network. Routines for building such networks are
scattered over several packages, but all made available through the function chooseCN. Here,
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we disable the interactivity of the function (ask=FALSE) and select the second type of graph
which is the graph of Gabriel (type=2).

gab <- chooseCN(sim2pop$other$xy,ask=FALSE, type=2)

The obtained network is automatically plotted by the function. It seems we are now ready
to proceed to the algorithm.

monl <- monmonier(sim2pop$other$xy,D,gab)
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Dashed line indicates present threshold

45

4.0

Sorted local distances

35

=1

100 200 300 400

rank

This plot shows all local differences sorted in decreasing order. The idea behind this is that
a significant boundary would cause local differences to decrease abruptly after the boundary.
This should be used to choose the threshold difference for the algorithm to stop extending
the boundary. Here, there is no indication af an actual boundary.

Why do the algorithm fail to find a boundary? Either because there is no genetic
differentiation to be found, or because the signal differentiating both populations is too
weak to overcome the random noise in genetic distances. What is the F; between the two
samples?

pairwise.fst (sim2pop)

#i#t 1
## 2 0.02960988

This value would be considered as very weak differentiation (Fsr = 0.023). Is it significant?
We can easily ellaborate a permutation test of this Fgr value; to save computational time,
we use only a small number of replicates to generate Fgp values in absence of population
structure:

replicate(10, pairwise.fst(sim2pop, pop=sample(pop(sim2pop))))

## [1] 0.004091902 0.003517229 0.003046663 0.004831481 0.004024440
## [6] 0.003749596 0.003605512 0.004046927 0.003941987 0.003772916

Fsr values in absence of population structure would be one order of magnitude lower
(more replicate would give a very low p-value — just replace 10 by 200 in the above
command). In fact, the two samples are indeed genetically differentiated.
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Can Monmonier’s algorithm find a boundary between the two populations? Yes, if we
get rid of the random noise. This can be achieved using a simple ordination method such as
Principal Coordinates Analysis.

pcol <- dudi.pco(D,scannf=FALSE,nf=1)
barplot(pcol$eig,main="Eigenvalues")
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We retain only the first eigenvalue. The corresponding coordinates are used to redefine the
genetic distances among genotypes. The algorithm is then re-run.

D <- dist(pcol1$li)

monl <- monmonier(sim2pop$other$xy,D,gab)
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# List of paths of maximum differences between neighbours #
# Using a Monmonier based algorithm #
SRR R R R R S AR A R S

$call:monmonier(xy = sim2pop$other$xy, dist = D, cn = gab, scanthres = FALSE)

# Object content #
Class: monmonier
$nrun (number of successive runs): 1
$runl: run of the algorithm
$threshold (minimum difference between neighbours): 1.631
$xy: spatial coordinates
$cn: connection network

# Runs content #

# Run 1
# First direction
Class: 1list
$path:
X y
Point_1 14.98299 93.81162
$values:
4.563555
# Second direction
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## Class: 1list

## $path:

#it X y

## Point_1 14.98299 93.81162

## Point_2 30.74508 87.57724

## Point_3 33.66093 86.14115

## ...

##

## $values:

## 4.563555 3.23581 3.906439 ...

This may take some time... but never more than five minutes on an ’ordinary’ personnal
computer. The object monl contains the whole information about the boundaries found. As
several boundaries can be seeked at the same time (argument nrun), you have to specify
about which run and which direction you want to get informations (values of differences or
path coordinates). For instance:

names (mon1)

## [1] "runi" "nrun" "threshold" "xy" "cn" "call"
names (monl1$runi)

## [1] "diri" "dir2"

monl$runi$diri

## $path

#it X y
## Point_1 14.98299 93.81162
H##t

## $values

## [1] 4.563555

It can also be useful to identify which points are crossed by the barrier; this can be done
using coords.monmonier:

coords .monmonier (monl)

## $runl

## $runi$dirl

#i#t x.hw y.hw first second
## Point_1 14.98299 93.81162 11 125
##

## $runi$dir?2
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#it x.hw y.hw first second
## Point_1 14.98299 93.81162 11 125
## Point_2 30.74508 87.57724 44 128
## Point_3 33.66093 86.14115 20 128
## Point_4 35.28914 81.12578 68 128
## Point_5 33.85756 74.45492 68 117
## Point_6 38.07622 71.47532 68 122
## Point_7 41.97494 70.02783 35 122
## Point_8 43.45812 67.12026 69 122
## Point_9 42.20206 59.59613 22 122
## Point_10 42.48613 52.55145 22 124
## Point_11 40.08702 48.61795 13 124
## Point_12 39.20791 43.89978 13 127
## Point_13 38.81236 40.34516 62 127
## Point_14 37.32112 36.35265 62 130
## Point_15 37.96426 30.82105 94 130
## Point_16 32.79703 28.00517 16 130
## Point_17 30.12832 28.60376 85 130
## Point_18 20.92496 29.21211 63 119
## Point_19 16.056811 22.72600 61 126
## Point_20 11.72524 21.15519 89 126
## Point_21 10.18696 16.61536 74 89

The returned dataframe contains, in this order, the  and y coordinates of the points of the
barrier, and the identifiers of the two 'parent’ points, that is, the points whose barycenter is
the point of the barrier.

Finally, you can plot very simply the obtained boundary using the method plot:

plot(monl)
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see arguments in 7plot.monmonier to customize this representation. Last, we can compare
the infered boundary with the actual distribution of populations:

plot(monl,add.arrows=FALSE,bwd=10,col="black")
points(sim2pop$other$xy, cex=2, pch=20,
col=fac2col (pop(sim2pop), col.pal=spectral))
legend ("topright",leg=c("Pop A", "Pop B"), pch=c(20),
col=spectral(2), pt.cex=2)
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Not too bad...

8 Simulating hybridization

The function hybridize allows to simulate hybridization between individuals from two
distinct genetic pools, or more broadly between two genind objects. Here, we use the
example from the manpage of the function, to go a little further. Please have a look at
the documentation, especially at the different possible outputs (outputs for the software
STRUCTURE is notably available).

temp <- seppop(microbov)
names (temp)

## [1] "Borgou" "Zebu" "Lagunaire"

## [4] "NDama" "Somba" "Aubrac"

## [7] "Bazadais" "BlondeAquitaine" "BretPieNoire"
## [10] "Charolais" "Gascon" "Limousin"

## [13] "MaineAnjou" "Montbeliard" "Salers"
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salers <- temp$Salers
zebu <- temp$Zebu
zebler <- hybridize(salers, zebu, n=40, pop="zebler")

A first generation (F1) of hybrids 'zebler’ is obtained. Is it possible to perform a backcross,
say, with ’salers’ population? Yes, here it is:

F2 <- hybridize(salers, zebler, n=40)
F3 <- hybridize(salers, F2, n=40)
F4 <- hybridize(salers, F3, n=40)

Finally, note that despite this example shows hybridization between diploid organisms,
hybridize is not restrained to this case. In fact, organisms with any even level of ploidy can
be used, in which case half of the genes is taken from each reference population. Ultimately,
more complex mating schemes could be implemented... suggestion or (better) contributions
are welcome!
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