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Multivariate analysis of genetic data
— exploring group diversity —

Thibaut Jombart, Caitlin Collins

MRC Centre for Outbreak Analysis and Modelling
Imperial College London

Genetic data analysis using ®, University of Leuven
29-10-2014
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Genetic data: introducing group data
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e How to identify groups?

e How to explore group diversity?
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Hierarchical clustering: a variety of algorithms

e single linkage

e complete linkage
o UPGMA

e Ward

o
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Rationale

1. compute pairwise genetic distances D (or similarities)
group the closest pair(s) together
(optional) update D

return to 2) until no new group can be made
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Differences between algorithms

. e single linkage: Dy, 4 = min(Dy;, Dy, ;)
\Dk’g=..-

e complete linkage: Dy, o = max(Dy i, Dy ;)

¢ UPGMA: Dy, , = 2ritDhi
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ANOVA model:

Exploring group diversity

total var. = (var. between groups) + (var. within groups)
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K-means rationale

Find groups which minimize within group var. (equally: maximize
between group var.).

In other words:
Identify a partition G = {g1, ..., gr} solving:

arg min Z Z l|x; — HA:H2

CG={91,96} iCan

with:
e x; € RP: vector of allele frequencies of individual i

e i € RP: vector of means allele frequencies of group &
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K-means algorithm

The K-mean problem is solved by the following algorithm:
1. select random group means (uy, k=1,...,K)
assign each individual x; to the closest group — gi

update group means iy,

go back to 2) until convergence (groups no longer change)
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K-means algorithm

initialization

— allele

® individual
* group mean
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K-means: limitations and extensions

Limitations

e slower for large numbers of alleles (e.g. 100,000)

e K-means does not identify the number of clusters (K)

run K-means after dimension reduction using PCA
try increasing values of K

use Bayesian Information Criterion (BIC) for model selection

15/30



Introduction Identifying groups Exploring group diversity

0000e0

K-means: limitations and extensions

Limitations
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Genetic clustering using K-means & BIC

(Jombart et al. 2010, BMC Genetics)

Value of BIC
versus number of clusters

1250
L

1200
L

Simulated data: island model with 6
populations

Actual number of
clusters

BIC

1150
L

1100
L

Number of clusters

K-means > STRUCTURE on simulated data (various island
and stepping stone models)

orders of magnitude faster (seconds vs hours/days)
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Why identifying clusters is not the whole story

Example of cattle breeds diversity (30 microsatellites, 704 individuals).

Group membership probabilities:

o
S

membership probabilty

Important to assess the relationships between clusters.
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Group membership probabilities: Multivariate analysis:
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Aggregating data by groups

group 1 §
group 2 | average

_)
group 3
group 4 alleles

alleles
group

o individual
o, 0
average
°
*, 5 X *

*

— multivariate analysis of group allele frequencies.
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Analysing group data

Available methods:

e Principal Component Analysis (PCA) of allele frequency table

e Genetic distance between populations — Principal
Coordinates Analysis (PCoA)

e Correspondance Analysis (CA) of allele counts
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Analysing group data

Available methods:

e Principal Component Analysis (PCA) of allele frequency table

e Genetic distance between populations — Principal
Coordinates Analysis (PCoA)

e Correspondance Analysis (CA) of allele counts

Criticism:
e Loose individual information
e Neglect within-group diversity

e CA: possible artefactual outliers
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Multivariate analysis: reminder

Individuals

Find principal components with maximum total variance.
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Multivariate analysis: reminder

Loadings
(variable contributions)

Find principal components with maximum total variance.
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Principal axis

Principal component

Find principal components with maximum total variance.
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Multivariate analysis: reminder

Variables 1,12, ... )

linear

coordinates i Zﬂah& H

= .

principal components i
:

:

L H

o H

Loadings E

(variable contributions) 3

Principal axis H

Principal component

Find principal components with maximum total variance.
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But total variance may not reflect group differences

Need to optimize different criteria.
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Optimizing different criteria

Similar approaches to PCA can be used to optimize different
quantities:

PCA: total variance

Between-group PCA: variance between groups

Within-group PCA: variance within groups

Discriminant Analysis: variance between groups / variance
within groups
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From PCA to DA: increasing group differentiation

Density on axis 1

fA

((Between-group PCA) Axis 1 ( Discriminant Analysis )

Max. separation of
groups

Density

Axis 1

A
JN\

Classical PCA

Max. total diversity

Axis 1

Max. diversity
between groups
24/30



Introduction Identifying groups Exploring group diversity

[e] 00000 000
000000 0000
®00000

Discriminant Analysis: limitations and extensions

Limitations:
e DA requires less variables (alleles) than observations
(individuals)
e DA requires uncorrelated variables (no frequencies, no linkage
disequilibrium)

data orthogonalisation /reduction using PCA before DA
overcomes limitations of DA

group membership probabilities, group prediction

1Joml)art et al. 2010, BMC Genetics
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Discriminant Analysis: limitations and extensions

Limitations:

e DA requires less variables (alleles) than observations
(individuals)

e DA requires uncorrelated variables (no frequencies, no linkage
disequilibrium)

Discriminant Analysis of Principal Components (DAPC)!:

e data orthogonalisation /reduction using PCA before DA
e overcomes limitations of DA

e group membership probabilities, group prediction

1Jombart et al. 2010, BMC Genetics
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Rationale of DAPC

PCA

Principal
components
(orthogonal variables)

Discriminant Functions
(synthetic variables)
Prlnmpal axes

(allele loadings)
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PCA of seasonal influenza (A/H3N2) data
Data: seasonal influenza (A/H3N2), 500 HA segments.

-5
- — H3N2, HA segment: PQA

Eigenvalues Sample sizes [} \

140
120
100

&0
0
40
20
0

Little temporal evolution, burst of diversity in 200277

@
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PCA of seasonal influenza (A/H3N2) data
Data: seasonal influenza (A/H3N2), 500 HA segments.

-5
~ H3N2, HA segment: PGA

Eigenvalues Sample sizes

140
120
100
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Little temporal evolution, burst of diversity in 200277

@

27/30



Introduction Identifying groups
o]

Exploring group diversity
00000 000
000000 0000
000e00

DAPC of seasonal influenza (A/H3N2) data

H3N2, HA segment: DAPC

2006

DA elgenvalues
E IIIHII

Strong temporal signal, originality of 2006 isolates (new alleles).

28/30



Introduction
o]

Identifying groups
00000
000000

H3N2, HA segment: DAPC

Sample sizes
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DAPC of seasonal influenza (A/H3N2) data

Strong temporal signal, originality of 2006 isolates (new alleles).
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Other features

DAPC can be used to:
e provides group assignment
probabilities
e can use supplementary individuals

e can predict group membership of
new data

e can be used for variable selection

Exploring group diversity
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Time to get your hands dirty (again)!

The pdf of the practical is online:
http://adegenet.r-forge.r-project.org/
or

Google — adegenet — documents — “Workshop Leuven, October 2014"
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