Multivariate analysis of genetic data:
exploring group diversity

Thibaut Jombart] Caitlin Collins

Imperial College London
MRC Centre for Outbreak Analysis and Modelling

October 29, 2014

Abstract

This practical provides an introduction to the analysis of group diversity in genetic
data analysis using R . First, simple clustering methods are used to infer the nature, and
the number of genetic groups. Second, we show how group information can be used to
explore the genetic diversity using the Discriminant Analysis of Principal Components
(DAPC). This second part will include two studies of the genetic makeup of Elizabethis

nonsensicus populations, as well as an investigation of the origins of cattle allegedly
abducted by aliens.

*tjombart@imperial.ac.uk

Contents

1 Defining genetic clusters
1.1 Hierarchical clustering
1.2 K-means oL

2 Describing group diversity: Flizabethis nonsensicus populations
2.1 Elizabethis nonsensicus: first contact
2.2 Elizabethis nonsensicus: the return

3 Describing group diversity: cattle breed discrimination and alien
abductions
3.1 Choosing how many components to retain
3.2 Using cross-validation o
3.3 Alien abductions

4 To go further

1 Defining genetic clusters

Group information is not always known when analysing genetic data. Even when some prior
clustering can be defined, it is not always obvious that these are the best genetic clusters
that can be defined. In this section, we illustrate two simple approaches for defining genetic
clusters.

1.1 Hierarchical clustering

Hierarchical clustering can be used to represent genetic distances as trees, and indirectly to
define genetic clusters. This is achieved by cutting the tree at a certain height, and pooling
the tips descending from the few retained branches into the same clusters (cutree). Here,
we load the data microbov, replace the missing data, and compute the Euclidean distances
between individuals:

library(adegenet)

data(microbov)

X <- scaleGen(microbov, missing="mean",scale=FALSE)
D <- dist(X)

Then, we use hclust to obtain a hierarchical clustering of the individual, using complete
linkage to obtain ”strong” groups.

hl <- hclust(D, method="complete")
h1

##

Call:

hclust(d = D, method = "complete")
##

Cluster method : complete

Distance : euclidean

Number of objects: 704

plot(hl,labels=FALSE)

Cluster Dendrogram

rﬂ_r \ } \ f] , | WI “ W ‘| y M‘

5
|

i

Height

D
hclust (*, "complete")

Groups can be defined by cutting the tree at a given height. This is performed by the
function cutree, which can also find the right height to obtain a specific number of clusters.
Here, we first look at two groups:

grp <- cutree(hl, k=2)
head(grp,10)

AFBIBOR9503 AFBIBOR9504 AFBIBOR9505 AFBIBOR9506 AFBIBOR9507 AFBIBOR9508

1 1 1 1 1 1
AFBIBOR9509 AFBIBOR9510 AFBIBOR9511 AFBIBOR9512
#it 1 1 1 1

The function table is extremely useful, as it can be used to build contingency tables.
Here, we use it to compare the inferred groups to the species and the origins of the cattles.

table(grp, other(microbov)$spe)

#it
grp BI BT

1 100 131
2 0 473

table(grp, other(microbov)$coun)

##

grp AF FR
1231 O
2 0 473

What can you say about the two inferred groups? Accordingly, what is the main
component of the genetic variability in these cattle breeds?

Repeat this analysis by cutting the tree into as many clusters as there are breeds in the
dataset (this can be extracted by the accessor pop), and name the result grp. Using table
as above, build a contingency table called tab to see the match between inferred groups and
breeds. The obtained table is then visualized using table.value:

grp <- cutree(hl, k=15)
tab <- table(pop(microbov), grp)

table.value(tab, col.lab=paste("grp",1:15))

o 22222222 22 2 2 2 2
(@) (@] (@) (@2} (@] (@] (@) (@) (@] (@) (@] (@] (@2} (@) (@]
NN
EE =5 - - —Borgou
u . —Zebu
] . . ——Lagunaire
' | L I ——NDama
. BE = - ——Somba
s 0 - = = ——Aubrac
L . . ——Bazadais
EE -HEB = | —BlondeAquitaine
= B - N = B [—BretPieNoire
s @B = = « | —cCharolais
= = n i = [—Gascon
H= == = = —Limousin
" . . ——MaineAnjou
= H m = - QN ——Montbeliard
T II [| —Salers

sm 15 25 [l 35|l <

Can some groups be identified as species or breeds? Do some species look more admixed
than others?

1.2 K-means

K-means is another, non-hierarchical approach for defining genetic clusters. While basic
K-means is implemented in the function kmeans, the function find.clusters provides a
computer-efficient implementation which first reduces the dimensionality of the data (using
PCA), and optionally allows for choosing the optimal number of clusters using Bayesian
Information Criteria (BIC). Use find.clusters to obtain 15 groups and store the result in

an object called grp. If unsure how to use the function, remember to check the help page
(?find.clusters).

set.seed (1)
grp <- find.clusters(microbov, n.pca=100, n.clust=15)

How many clusters would you have selected relying on the BIC?

Using table.value as before, visualize the correspondence between inferred groups and
actual breeds:

table.value(table(pop(microbov), grp$grp), col.lab=paste("grp", 1:15))

o i N o™ < n
— N (92} < 1o} © N~ [ee] (o2} — — — — — —
o o o o o o o o o o o o o o o
= = = = = = = = = = = = = = =
o (o)) (@] (@) (@] (@) (@] (@] (@) (@] (@) (@] (@) (@] (@]

. n [I Borgou
|

. ——Zebu
. ——Lagunaire

. n —NDama

L . . ——Somba
. [E— . . ——Aubrac

= . ——Bazadais

——BlondeAquitaine

= . . [] B - |—BretPieNoire

= . L] . L] . ——Charolais
u . u L] u ——Gascon

. . n .]] L]] ——Limousin
. = = |—MaineAnjou
. = ' = = —Montbeliard

. u ' —Salers
su 158 251 35|l 45|} 5= [}

How do these results compare to the ones obtained using hierarchical clustering? What are
the species which are easily genetically identified using K-means?

Repeat the same analyses for the nancycats data. What can you say about the likely
profile of admixture between these cat colonies?

data(nancycats)
grp <- find.clusters(nancycats, n.pca=100, n.cl=5)
table.value(table(pop(nancycats), grp$grp), col.lab=paste("grp",1:5))

sdo— H B HE = E=HER [[
pdib— EE-B= n B HHENER - =
¢ dip— -. . m] _E B T
Z dib— s [l = = B = == H - B
1db— = =« = " H = H = |

EEYE v

2 Describing group diversity: Flizabethis nonsensicus
populations

2.1 Flizabethis nonsensicus: first contact

The first study of group diversity focuses on Elizabethis nonsensicus, a diploid plant well-
known for having a number of cryptic sub-species. A total of 600 individual plants have been
sampled in the Leuven countryside and genotyped for 30 microsatellite markers. We first
load the dataset, which has already been converted to a genind object:

load(url("http://adegenet.r-forge.r-project.org/files/Leuven2014/Enonsensicusl.RData"),
verbose=TRUE)

Loading objects:
Enonsensicusl

Enonsensicusl

##

LRI R R AR AR IR IR

#Hit ### Genind object ###

HHEH R R R

- genotypes of individuals -

##

S4 class: genind

Qcall: read.fstat(file = file, missing = missing, quiet = quiet)
##

Otab: 600 x 140 matrix of genotypes

##

Q@ind.names: vector of 600 individual names

Q@loc.names: vector of 30 locus names

Q@loc.nall: number of alleles per locus

Qloc.fac: locus factor for the 140 columns of Q@tab

Oall.names: list of 30 components yielding allele names for each locus
Q@ploidy: 2

Qtype: codom

##
Optional contents:

Qpop: - empty -
Qpop.names: - empty -
#it

Qother: - empty -

The main goal of the study is to assess whether the sampled plants all belong to
the same panmictic population, or whether sub-populations can be identified. First, use
find.clusters to identify the number and nature of potential genetic clusters, and store
the result in an object called grp1l.

grpl <- find.clusters(Enonsensicusl, n.pca=40, n.clust=6)

How many clusters do you identify? Are these dependent on how many principal
components (PCs) you retain? What are the respective group sizes?

We want to assess the relationships between these groups using DAPC. Using the following
command, perform the DAPC and store the results in a new object called dapc1:

dapcl <- dapc(Enonsensicusl, pop=grpl$grp, scale=FALSE)

dapcl <- dapc(Enonsensicusl, pop=grpl$grp, scale=FALSE, n.pca=20, n.da=b)

Use the function scatter to visualize the results. This function has many options, which
are documented in ?scatter.dapc. Your graphic should roughly ressemble:

scatter(dapcl, col=funky(6), scree.pca=TRUE)

10

PCA eigenvalues

DA eigenvalues

The function scatter plots by default the first two discriminant functions.
visualizing other possibly relevant axes.

population?

It may be useful to compare these results to an alternative approach.
the Euclidian distances (function dist) between the matrix of allele frequencies
as.matrix(Enonsensicusl), and use them to build a Neighbour-Joining tree (implemented
in the ape package). Examine the tree. This should look like:

library(ape)

trel <- nj(dist(as.matrix(Enonsensicusl)))
plot(trel, type="unr", show.tip=FALSE, main="Enonsensicus tree 1")

11

Try

What can you tell about the structure of this

Compute

Enonsensicus tree 1

What are your conclusions?

2.2 Flizabethts nonsensicus: the return

After the initial study of E. nonsensicus populations, the sampling area has been extended
and new populations have been discovered. A new sample of 450 plants has been characterized
for the same 30 microsatellite markers. Your task is to conduct the same kind of analysis,
and assess the genetic makeup of the new population.

load(url("http://adegenet.r-forge.r-project.org/files/Leuven2014/Enonsensicus2.RData"),
verbose=TRUE)

Loading objects:
Enonsensicus?2

Enonsensicus?2

#Ht
HEHHHEFHHAFH AR AR

12

#Hit ### Genind object ###

#it R R RS

- genotypes of individuals -

Hit

S4 class: genind

Qcall: .local(x = x, i =1i, j = j, drop = drop)
#i#

Otab: 450 x 160 matrix of genotypes

#Hit

0ind.names: vector of 450 individual names

Q@loc.names: vector of 30 locus names

Qloc.nall: number of alleles per locus

Oloc.fac: locus factor for the 160 columns of Q@tab
Qall.names: list of 30 components yielding allele names for each locus
Q@ploidy: 2

Qtype: codom

HH

Optional contents:

QOpop: - empty -

Qpop.names: - empty -

#it

Qother: a list containing: elements without names

Again, use find.clusters to identify the number and nature of potential genetic
clusters, and store the result in an object called grp2. How many clusters would you retain?
How do the results compare to the previous study?

Try assessing the relationships between these clusters using dapc. If results seem unstable
from one run to another, try increasing the number of starting points used in the K-means
algorithm (argument n.start).

grp2 <- find.clusters(Enonsensicus2, scale=FALSE, n.start=30,
n.pca=80, n.clust=12)
dapc2 <- dapc(Enonsensicus2, pop=grp2$grp, scale=FALSE,
n.pca=20, n.da=b)

Use the function scatter to visualize the results. Specify that you want the minimum
spanning tree added to link together the closest populations. With a bit of customisation
(see ?scatter.dapc), your graphic should ressemble

scatter(dapc2, col=funky(12), legend=TRUE, mstree=TRUE,

cstar=0, axesell=FALSE, clab=0, cex=2, bg=grey(.2),
scree.pca=TRUE, segcol="white")

13

What can you say about the structure of this population? Assuming this structure is
essentially spatial, what kind of spatial processes could have generated the observed patterns?

14

3 Describing group diversity: cattle breed
discrimination and alien abductions

3.1 Choosing how many components to retain

DAPC relies on a ‘simplification’ of the data using a PCA as a prior step to Discriminant
Analysis. As always in multivariate analysis, the choice of the number of PCs to retain is
not trivial. Let us illustrate the impact of this choice on the results using the microbov
dataset (704 cattles of 15 breeds typed for 30 microsatellite markers). We first examine the
% of successful reassignment (i.e., quality of discrimination) for different numbers of retained
PCs. First, retaining only 10 PCs during the dimension-reduction step, and all discriminant
functions:

data(microbov)
microbov

##

HHEH R R

Hit ### Genind object ###

R

- genotypes of individuals -

##

S4 class: genind

Qcall: genind(tab = truenames(microbov)$tab, pop = truenames(microbov)$pop)
##

Qtab: 704 x 373 matrix of genotypes

##

Oind.names: vector of 704 individual names

Qloc.names: vector of 30 locus names

Q@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 373 columns of Q@tab

Oall.names: list of 30 components yielding allele names for each locus
Oploidy: 2

Qtype: codom

##

Optional contents:

Qpop: factor giving the population of each individual

Opop.names: factor giving the population of each individual
##

Qother: a list containing: coun breed spe

temp <- summary(dapc(microbov, n.da=100, n.pca=10))$assign.per.pop*100

15

par (mar=c(4.5,7.5,1,1))
barplot(temp, xlab="% of reassignment to actual breed",
horiz=TRUE, las=1)

Salers
Montbeliard
MaineAnjou

Limousin
Gascon
Charolais
BretPieNoire
BlondeAquitaine
Bazadais
Aubrac

Somba

NDama
Lagunaire

Zebu

Borgou

o —

20 40 60 80 100
% of reassignment to actual breed

We can see that some breeds are well discriminated while others are mostly overlooked by
the analysis. This is because too much genetic information is lost when retaining only 10
PCs. We repeat the analysis, this time keeping 300 PCs:

temp <- summary(dapc(microbov, n.da=100, n.pca=300))$assign.per.pop*100

par(mar=c(4.5,7.5,1,1))
barplot(temp, xlab="}, of reassignment to actual breed", horiz=TRUE, las=1)

Salers

Montbeliard
MaineAnjou
Limousin
Gascon
Charolais
BretPieNoire
BlondeAquitaine
Bazadais
Aubrac
Somba
NDama
Lagunaire

Zebu

Borgou

o —

20 40 60

@
o
=
o

0
% of reassignment to actual breed
We now obtain almost 100% discrimination for all groups. Is this result satisfying? Let us

try again, this time using randomised groups in the analysis:

x <- microbov
pop(x) <- sample(pop(x))
temp <- summary(dapc(x, n.da=100, n.pca=300))$assign.per.pop*100

par (mar=c(4.5,7.5,1,1))
barplot(temp, xlab="} of reassignment to actual breed", horiz=TRUE, las=1)

Bazadais

Zebu

MaineAnjou

Charolais

Gascon

NDama

Montbeliard

Borgou

BlondeAquitaine

Limousin

Somba

Lagunaire

Salers

|
|
|
|
|
|
|
Aubrac | |
|
|
|
|
|
|
|

BretPieNoire

[I I I |
0 20 40 60 80

% of reassignment to actual breed

Groups have been randomised, and yet we still obtain very good discrimination. Why is this?

In attempting to summarise high-dimensional data in a small number of meaningful
discriminant functions, DAPC must manage a trade-off. If too few PCs (with respect
to the number of individuals) are retained, useful information will be excluded from the
analysis, and the resulting model will not be informative enough to accurately discriminate
between groups. By contrast, if too many PCs are retained, the discriminant functions will
be over-fitted and capable of discriminating any clusters. In this case, the discriminant
functions will be completely tailored to the dataset, and loose any ability to generalize to
new or unseen data.

3.2 Using cross-validation

As discussed above, choosing the ‘right’ number of PCs in DAPC is not a trivial task. As the
main goal could be formulated as finding the number of PCs which ‘maximizes the probability
of assigning new individuals to their actual group’, one natural approach to address this issue
is cross-validation. Cross-validation (function xvalDapc) provides an objective optimisation
procedure for identifying the ’goldilocks point’ in the trade-off between retaining too few

18

and too many PCs in the model. In cross-validation, the data is divided into two sets: a
training set (typically comprising 90% of the data) and a validation set (which contains the
remainder (by default, 10%) of the data). With xvalDapc, the validation set is selected
by stratified random sampling: this ensures that at least one member of each group or
population in the original data is represented in both training and validation sets.

DAPC is carried out on the training set with variable numbers of PCs retained, and the
degree to which the analysis is able to accurately predict the group membership of excluded
individuals (those in the validation set) is used to identify the optimal number of PCs to
retain. At each level of PC retention, the sampling and DAPC procedures are repeated
n.rep times. Let us apply this method to the microbov dataset:

mat <- as.matrix(na.replace(microbov, method="mean"))
grp <- pop(microbov)

xval <- xvalDapc(mat, grp, n.pca.max=200, training.set=0.9,
result="groupMean", scale=FALSE, n.rep=10,
n.pca=c(5,10,seq(25,by=25,t0=200)),
xval.plot = TRUE)

DAPC Cross—Validation

Proportion of successful outcome prediction

0.2

Number of PCA axes retained

When xval.plot is TRUE, a scatterplot of the DAPC cross-validation is generated.
The number of PCs retained in each DAPC varies along the x-axis, and the proportion of

19

successful outcome prediction varies along the y-axis. Individual replicates appear as points,
and the density of those points in different regions of the plot is displayed in blue.

names (xval)

[1] "Cross-Validation Results"

[2] "Median and Confidence Interval for Random Chance"
[3] "Mean Successful Assignment by Number of PCs of PCA"
[4] "Number of PCs Achieving Highest Mean Success"

[5] "Root Mean Squared Error by Number of PCs of PCA"

[6] "Number of PCs Achieving Lowest MSE"

[7] "DAPC"

xval[2:6]

$ Median and Confidence Interval for Random Chance-

##t 2.5% 50% 97.5%

0.05053 0.06668 0.08387

##

$ Mean Successful Assignment by Number of PCs of PCA"

5 10 25 50 75 100 125 150 175 200

0.5724 0.6998 0.8271 0.8571 0.8873 0.8969 0.8958 0.8949 0.8893 0.8707
##
$ Number of PCs Achieving Highest Mean Success”

[1] "100"

##

$ Root Mean Squared Error by Number of PCs of PCA"

#i# 5 10 25 50 75 100 125 150 175 200

0.4307 0.3028 0.1767 0.1522 0.1200 0.1060 0.1079 0.1126 0.1137 0.1335
##

$ Number of PCs Achieving Lowest MSE"

[1] "100"

The ideal result of this cross-validation procedure would be a bell-shaped relationship,
indicating the optimal number of PCs to retain. Here, most solutions beyond 75 PCs seem
equivalent. Make your own DAPC of microbov choosing your preferred number of PCs and

store the result in dapc.bov.

dapc.bov <- dapc(microbov,n.pca=100,n.da=14)

20

3.3 Alien abductions

set.seed (1)

salers <- seppop(microbov)$"Salers"
unknownl <- hybridize(salers, salers, hyb.label="unknown",n=10)
pop (unknownl) <- unknownl$call <- NULL

Zebu <- seppop(microbov)$"Zebu"
unknown2 <- hybridize(Zebu, Zebu, hyb.label="unknown",n=5)

Aubrac <- seppop(microbov)$"Aubrac"

temp <- hybridize(Aubrac, Aubrac, hyb.label="unknown",n=5)
temp$call <- NULL

unknown2 <- repool (unknown2,temp)

Somba <- seppop(microbov)$"Somba"
temp <- hybridize(Somba, Somba, hyb.label="unknown",n=10)
unknown2 <- repool (unknown2,temp)

unknown2 <- repool(unknown2, microbov) [1:nInd(unknown?2),]
pop (unknown2) <- unknown2$call <- NULL

After your analysis of the optimal discrimination of cattle breeds, you are contacted
by some governmental officers to investigate the possible origin of blood samples coming
from cattles allegedly abducted by aliens. Blood samples have been found in two
different saucepans. The resulting datasets are respectively named unknownl and unknown2
(governmental officers notoriously lack originality). The files are available as RData from the
following URLs:

21

load(url("http://adegenet.r-forge.r-project.org/files/Leuven2014/unknownl.RData"),
verbose=TRUE)

Loading objects:
unknownl

unknownl

##

LR R RN R R R SR I RIS

Hit ### Genind object ###

HHEH R R R

- genotypes of individuals -

##

S4 class: genind

Qcall: NULL

##

Otab: 10 x 373 matrix of genotypes

##

Q@ind.names: vector of 10 individual names
Q@loc.names: vector of 30 locus names

Qloc.nall: number of alleles per locus

Qloc.fac: locus factor for the 373 columns of Q@tab
Qall.names: list of 30 components yielding allele names for each locus
Q@ploidy: 2

Qtype: codom

##

Optional contents:

Q@pop: - empty -

Qpop.names: - empty -

##

Qother: - empty -

load(url("http://adegenet.r-forge.r-project.org/files/Leuven2014/unknown2.RData"),
verbose=TRUE)

Loading objects:
unknown?2

unknown?2

##

LR R IR R R R R R IR
#Hit ### Genind object ###
HHEH R R

22

#Ht
##
##
#it
#it
#Ht
##
#H#
#it
#it
#Ht
##
##
#it

- genotypes of individuals -

S4 class:
@call: NULL

genind

Q@tab:

20 x 373 matrix of genotypes

@ind.
@loc.
@loc.
@loc.
@all.

names:
names:

vector of 20 individual names
vector of 30 locus names

nall: number of alleles per locus
fac: locus factor for the

Oploidy: 2

codom

373 columns of @tab
names: list of 30 components yielding allele names for each locus

Otype:
##
##
##
##
##
##

Optional contents:

Opop: - empty -
Opop.names: - empty -

Q@other: a list containing: elements without names

As seen before, DAPC can be used to predict group memberships of individuals based on
their scores on the discriminant functions. One advantage of this approach is that the same
can be done with new individuals, provided the new data have exactly the same variables
as the ones used in the analysis. First, let us check that the loci and alleles in the two new
datasets (unknownl and unknown2) are indeed identical:

look at the first ones
head(locNames (microbov, withAlleles=TRUE),10)

[1] "INRA63.167" "INRA63.171" "INRA63.173" "INRA63.175" "INRA63.177"
[6] "INRA63.179" "INRA63.181" "INRA63.183" "INRA63.185" "INRA5.137"
head(locNames (unknownl, withAlleles=TRUE),10)

[1] "INRA63.167" "INRA63.171" "INRA63.173" "INRA63.175" "INRAG63.177"
[6] "INRA63.179" "INRA63.181" "INRA63.183" "INRA63.185" "INRA5.137"
head (locNames (unknown2, withAlleles=TRUE),10)

[1] "INRA63.167" "INRA63.171" "INRA63.173" "INRA63.175" "INRA63.177"
[6] "INRA63.179" "INRA63.181" "INRA63.183" "INRA63.185" "INRA5.137"

look at the last ones
tail (locNames (microbov, withAlleles=TRUE),10)

23

[1] "TGLA53.191" "SPS115.242" "SPS115.244" "SPS115.246" "SPS115.248"
[6] "SPS115.250" "SPS115.252" "SPS115.254" "SPS115.256" "SPS115.258"
tail (locNames (unknownl, withAlleles=TRUE),10)

[1] "TGLA53.191" "SPS115.242" "SPS115.244" "SPS115.246" "SPS115.248"
[6] "SPS115.250" "SPS115.252" "SPS115.254" "SPS115.256" "SPS115.258"
tail (locNames (unknown2, withAlleles=TRUE),10)

[1] "TGLA53.191" "SPS115.242" "SPS115.244" "SPS115.246" "SPS115.248"
[6] "SPS115.250" "SPS115.252" "SPS115.254" "SPS115.256" "SPS115.258"

formally compare them
identical (locNames (microbov, withAlleles=TRUE),locNames (unknownl, withAlleles=TRUE))

[1] TRUE
identical (locNames (microbov, withAlleles=TRUE),locNames(unknown2, withAlleles=TRUE))

[1] TRUE

Note that if these were not identical, the function repool could be used to pool data
with different alleles.

Look at the documentation of predict.dapc, and use the function to predict where the
abducted cattles came from.

predl <- predict(dapc.bov, newdata=unknownl)
100*round (predi$posterior,2)

#it Borgou Zebu Lagunaire NDama Somba Aubrac Bazadais BlondeAquitaine
01 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0
05 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
#it BretPieNoire Charolais Gascon Limousin MaineAnjou Montbeliard Salers
01 0 0 0 0 0 0 100
02 0 0 0 0 0 0 100
03 0 0 0 0 0 0 100

24

#Ht
##
##
#it
#it
#Ht
##

04
05
06
07
08
09
10

O O N O O O O

O O O O O O O

O O O O O O O

O O O O O O O

pred2 <- predict(dapc.bov, newdata=unknown2)
100*round (pred2$posterior,2)

#Ht
#t
##
#it
#it
#it
#t
##
#it
#it
#it
#Ht
##
##
#it
#it
##
##
##
#it
#it
#Ht
##
##
#it
#it
#it
#Hit
##
#it
#it
#it
#it
##

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

01
02
03
04
05
06
07
08
09
10
11
12

O O O O O O O

Borgou Zebu Lagunaire NDama Somba Aubrac Bazadais

0

O O O OO O OO O OO OO O NO oo

0

BretPieNoire Charolais Gascon

100
100
100
100

©
(o9}

O O O O O OO OO OO o oo

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0

O O O O O OO OO o oo

3

\]

O O O O O

0

O O O O O OO OO o oo

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 100 0

0 100 0

0 100 0

0 100 0

0 100 0

100 0 0

100 0 0

100 0 0

63 0 0

100 0 0

100 0 0

100 0 0

100 0 0

100 0 0

100 0 0
Limousin

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

25

0
0
0
0
0
0
0

BlondeAquitaine

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

O O O OO O O O o o o

100
100
100
100

98
100
100

MaineAnjou Montbeliard Salers

O O O O O OO OO o oo

13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

If the output of predict are called predl and pred2, you can visualise the predicted
group memberships using:

par (xpd=TRUE, mar=c(8,4,2,3))
barplot (t(100*round (predi$posterior,2)), col=funky(15),ylab="7, assignment")
legend ("bottom", fill=funky(15),

legend=microbov@pop.names,

ncol=4,inset=c(0,-.3))

o
o —
—
o |
(¢}
o |
2 o
Q
S
c
=
[}
%]
@
X Q
o _|
N
O -
01 02 03 04 05 06 07 08 09 10
O Borgou E Somba O BretPieNoire @ MaineAnjou
B Zebu O Aubrac @ Charolais O Montbeliard
@ Lagunaire [l Bazadais O Gascon B Salers
O NDama @ BlondeAquitaine B Limousin

26

par (xpd=TRUE, mar=c(8,4,2,3))
barplot (t (100*round (pred2$posterior,2)), col=funky(15),ylab="7, assignment")
legend("bottom", fill=funky(15),

legend=microbov@pop.names,

ncol=4,inset=c(0,-.3))

o
O —
—
Q _|
[oe]
o |
2 ©
()
IS
c
2
9]
(%]
©
X QA
o _|
N
o -
01 03 05 07 09 11 13 15 17 19
O Borgou B Somba O BretPieNoire @ MaineAnjou
B Zebu O Aubrac @ Charolais O Montbeliard
@ Lagunaire B Bazadais O Gascon @ Salers
O NDama @ BlondeAquitaine B Limousin

What are your conlcusions?

27

4 'To go further

DAPC is more extensively covered in a dedicated tutorial which you can access from the
adegenet website:
http://adegenet.r-forge.r-project.org/

or by typing:
adegenetTutorial ("dapc")

The paper presenting the method is in open access online:
http://www.biomedcentral.com/1471-2156/11/94

Lastly, as of version 1.4-0 of adegenet, a web interface for DAPC can be started from
R using:

adegenetServer ("DAPC")

28

http://adegenet.r-forge.r-project.org/
http://www.biomedcentral.com/1471-2156/11/94

	Defining genetic clusters
	Hierarchical clustering
	K-means

	Describing group diversity: Elizabethis nonsensicus populations
	Elizabethis nonsensicus: first contact
	Elizabethis nonsensicus: the return

	Describing group diversity: cattle breed discrimination and alien abductions
	Choosing how many components to retain
	Using cross-validation
	Alien abductions

	To go further

