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Abstract

This practical provides an introduction to the analysis of group diversity in genetic
data analysis using R . First, simple clustering methods are used to infer the nature, and
the number of genetic groups. Second, we show how group information can be used to
explore the genetic diversity using the Discriminant Analysis of Principal Components
(DAPC). More information on this latter topic is available in a tutorial dedicated to
DAPC, accessible from the adegenet website or by typing adegenetTutorial ("dapc")
(whilst connected to the internet).
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1 Defining genetic clusters

Group information is not always known when analysing genetic data. Even when some prior
clustering can be defined, it is not always obvious that these are the best genetic clusters
that can be defined. In this section, we illustrate two simple approaches for defining genetic
clusters.

1.1 Hierarchical clustering

Hierarchical clustering can be used to represent genetic distances as trees, and indirectly to
define genetic clusters. This is achieved by cutting the tree at a certain height, and pooling
the tips descending from the few retained branches into the same clusters (cutree). Here,
we load the data microbov, replace the missing data, and compute the Euclidean distances
between individuals:

library (adegenet)

## Loading required package: ade4
##
## adegenet 1.4-2 is loaded
##
##
## - to start, type ’?adegenet’

## - to browse adegenet website, type ’adegenetWeb ()’

## - to post questions/comments: adegenet-forum@lists.r-forge.r-project.org
data(microbov)

X <- scaleGen(microbov, missing="mean",scale=FALSE)

D <- dist(X)

Then, we use hclust to obtain a hierarchical clustering of the individual, using complete
linkage to obtain ”strong” groups.

hl <- hclust(D, method="complete")
hi

#it

## Call:

## hclust(d = D, method = "complete")
#i#

## Cluster method : complete

## Distance : euclidean

## Number of objects: 704

plot(hl)
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Groups can be defined by cutting the tree at a given height. This is performed by the
function cutree, which can also find the right height to obtain a specific number of clusters.
Here, we first look at two groups:

grp <- cutree(hl, k=2)
head(grp,10)

## AFBIBOR9503 AFBIBOR9504 AFBIBOR9505 AFBIBOR9506 AFBIBOR9507 AFBIBOR9508

## 1 1 1 1 1 1
## AFBIBOR9509 AFBIBOR9510 AFBIBOR9511 AFBIBOR9512
## 1 1 1 1

The function table is extremely useful, as it can be used to build contingency tables.
Here, we use it to compare the inferred groups to the species and the origins of the cattles.

table(grp, other(microbov)$spe)

#it
## grp BI BT



## 1 100 131
## 2 0 473

table(grp, other(microbov)$coun)

##

## grp AF FR
# 1231 O
## 2 0 473

What can you say about the two inferred groups? Accordingly, what is the main
component of the genetic variability in these cattle breeds?

Repeat this analysis by cutting the tree into as many clusters as there are breeds in the
dataset (this can be extracted by pop), and name the result grp. Using table as above,

build a contingency table called tab to see the match between inferred groups and breeds.
The obtained table is then visualized using table.value:

table.value(tab, col.lab=paste("grp",1:15))
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Can some groups be identified as species or breeds? Do some species look more admixed
than others?

1.2 K-means

K-means is another, non-hierarchical approach for defining genetic clusters. While basic
K-means is implemented in the function kmeans, the function find.clusters provides a
computer-efficient implementation which first reduces the dimensionality of the data (using
PCA), and optionally allows for choosing the optimal number of clusters using Bayesian
Information Criteria (BIC). Use find.clusters to obtain 15 groups and store the result in
an object called grp. If unsure how to use the function, remember to check the help page
(?find.clusters).

How many clusters would you have selected relying on the BIC?

Using table.value as before, visualize the correspondence between inferred groups and
actual breeds:

table.value(table(pop(microbov), grp$grp), col.lab=paste("grp", 1:15))
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How do these results compare to the ones obtained using hierarchical clustering? What are
the species which are easily genetically identified using K-means?

Repeat the same analyses for the nancycats data. What can you say about the likely
profile of admixture between these cat colonies?
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2 Describing group diversity: an application to
Genome-Wide Association Study (GWAS)

2.1 The data

In this part, we use multivariate analyses to investigate genetic differences between two
simulated groups of bacterial genomes, one of which is resistant to a given antibiotic.

The simulated data used in this practical are available online from the following address:
http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData. The dataset
is in R’s binary format (extension RData), which uses compression to store data efficiently
(the raw csv file would be more than 4MB). R objects can be loaded into R using load. The
instruction url is required to load the data directly from the internet; as data are loaded, a
new object simGWAS appears in the R environment:

load(url("http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData"))
ls(pattern="sim"

## [1] "simGWAS"
class(simGWAS)

## [1] "list"

names (simGWAS)

## [1] "snps" "phen"
class(simGWAS$snps)
## [1] "matrix"
class(simGWAS$phen)
## [1] "character"
dim(simGWAS$snps)
# [1] 95 10000

simGWAS$snps[1:10,1:20]


http://adegenet.r-forge.r-project.org/files/simGWAS/simGWAS.RData

#it 123456789 10 11 12 13 14 15 16 17 18 19 20
## isolate-1 000101100 1 1 0 1 1 O O 1 O O 1
## isolate-2 000101100 1 1 1 1 1 0 1 1 O O 1
## isolate-3 000111110 1 0 1 1 1 1 1 1 1 0 1
## isolate-4 011101100 0 1 1 0 1 1 1 0 1 0 O
## isolate-5 100101010 1 1 0 1 1 0 1 1 1 0 O
## isolate-6 110111100 1 1 1 1 1 0 1 1 1 0 1
## isolate-7 110110010 1 0 1 1 1 0 O0 1 1 1 O
## isolate-8 01 0001000 1 0 1 1 0 O 1 1 1 1 O
## isolate-9 010111000 1 1 1 1 0 1 1 1 1 1 1
## isolate-10 000111100 1 1 0 O O O O 1 1 0 1

print (object.size (simGWAS$snps), unit="Mb")
## 7.8 Mb

length (simGWAS$phen)

## [1] 95

simGWAS$phen

T (T U s G T G OO XS s i O Gy D0 s sy s
## [18] "S" "S" MSM MGM MM VRN MgM MgM WgM NGM wgM mgH wgn WRN WRM ngH g
## [35] "s" "s" "R" "S" "S" "R" "R" "R" "S" "S" "S" 'R" US" "S" vs" vs" g
## [52] "s" "s" "S" VR" UR" US" "S" "S" MS" vSM vgM vgM vgw ngn ngr ngv g
## [69] "s" "R" "R" "R" "S" "S" "R" "S" "R" "R" "R" "R" "S" "S" "S" "S" "S"
fr () SR I S M G O g g w30

table (simGWAS$phen)

#it
#* R S
## 24 71

The object simGWAS is a list with two components: $snps is a matrix of Single Nucleotide
Polymorphism (SNPs) data, and $phen is the phenotype of the different sampled isolates.
The SNPs data has a modest size by GWAS standards: only 95 isolates (in row) and 10000
SNPs (alleles coded as 0/1). Note that here, all SNPs are binary, so that only one allele
needs to be stored. Consequently, we do not need to use the genind class to store the data
(this would be a waste of RAM - not a problem here, but definitely a concern for larger
datasets).

To simplify further commands, we create the new objects snps and phen from simGWAS:



snps <- simGWAS$snps
phen <- factor (simGWAS$phen)

2.2 First assessment of the genetic diversity

Principal Component Analysis (PCA) is a very powerful tool for reducing the diversity
contained in massively multivariate data into a few synthetic variables (the principal
components — PCs). There are several versions of PCA implemented in R. Here, we
use dudi.pca from the ade4 package, specifying that variables should not be scaled
(scale=FALSE) to unit variances (this is only useful when variables have inherently different
scales of variation, which is not the case here):

pcal <- dudi.pca(snps, scale=FALSE)

PCA eigenvalues
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The method displays a screeplot (barplot of eigenvalues) to help the user decide how
many PCs should be retained. The general rule is to retain only the largest eigenvalues, after
which non-structured variation results in smoothly decreasing eigenvalues. How many PCs
would you retain here?
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pcal

## Duality diagramm

## class: pca dudi

## $call: dudi.pca(df = snps, scale = FALSE, scannf = FALSE, nf = 4)
##

## $nf: 4 axis-components saved

## $rank: 94

## eigen values: 31.76 28.77 28.13 25.72 21.68 ...
##  vector length mode content

## 1 $cw 10000 numeric column weights

## 2 $lw 95 numeric row weights

## 3 $eig 94 numeric eigen values

#t

#i# data.frame nrow mncol content

## 1 $tab 95 10000 modified array

## 2 $1i 95 4 row coordinates

## 3 $11 95 4 row normed scores

## 4 $co 10000 4 column coordinates
## 5 $ci 10000 4 column normed scores

## other elements: cent norm

The object pcal contains various information. Most importantly:

e pcal$eig: contains the eigenvalues of the analysis, representing the amount of
information contained in each PC.

e pcal$li: contains the principal components.

e pcal$cl: contains the principal axes (loadings of the variables).

head(pcal$eig)

## [1] 31.76 28.77 28.13 25.72 21.68 21.37

head(pcal$li)

#i# Axisl Axis2 Axis3 Axiséd
## isolate-1 3.606 -2.133 9.623 -6.302
## isolate-2 1.913 -1.657 8.734 -10.006
## isolate-3 2.317 -2.565 9.325 -7.446
## isolate-4 2.491 -2.485 8.819 -6.030
## isolate-5 2.449 -1.490 8.576 -8.776
## isolate-6 2.939 -2.693 10.877 -3.797

head(pcal$cl)

11



#Ht
##
##
#it
#Ht
#Ht
##

X1
X2
X3
X4
X5
X6

Cs1
0.0100427
.0051457
.0000335
.0010178
0.0070474
.0101199

CS2

.004292
.003539
.003363
.002489
.007802
.013435

CS3

.003510
.001471
.003798
.002323
.003475
.021812

Cs4

.0092503
.0075073
.0013049
.0007848
.0057484
.0321210

Because of the large number of variables, the usual biplot (function scatter) is useless to
visualize the results (try scatter(pcal) if unsure). We represent only PCs using s.label:

s.label(pcal$li, sub="PCA - PC 1 and 2")
add.scatter.eig(pcal$eig,4,1,2, ratio=.3, posi="topleft")

Eigenvalues
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What can you say about the genetic relationships between the isolates? Are there indications
of distinct lineages of bacteria? If so, how many lineages would you count? For a more
quantitative assessment of this clustering, we derive squared Euclidean distances between
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isolates (function dist) and use hierarchical clustering with complete linkage (hclust) to
define tight clusters:

D <- dist(pcal$lil[,1:4])"2
clust <- hclust(D, method="complete")

plot(clust, main="Clustering (complete linkage) based on the first 4 PCs", cex=.4)

Clustering (complete linkage) based on the first 4 PCs
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hclust (*, "complete")

How many clusters are there in the data? How does it compare to what you would
have assessed based on the first two PCs of PCA? Bonus question: considering that the
original data are profile of binary SNPs, what does the "height’ represent in this dendrogram?

You can define clusters as before based on the dendrogram clust, using cutree:

pop <- factor(cutree(clust, k=5))
head (pop, 20)

## 1isolate-1 isolate-2 isolate-3 isolate-4 isolate-5 isolate-6
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it 1 1 1 1 1 1
## 1isolate-7 isolate-8 isolate-9 isolate-10 isolate-11 isolate-12

##t 1 1 1 1 1 1
## isolate-13 isolate-14 isolate-15 isolate-16 isolate-17 isolate-18
H## 1 1 1 2 2 2
## isolate-19 isolate-20
#t 2 2

## Levels: 1 2 34 5

Now, we can represent these groups on top of the PCs using s.class (clusters are
indicated by different colors and ellipses):

s.class(pcal$li, fac=pop, col=transp(funky(5)), cpoint=2,
sub="PCA - axes 1 and 2")
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e g» ©
©)
PCA —axes 1 and 2

We do the same for PCs 3 and 4:
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s.class(pcal$li, xax=3, yax=4, fac=pop, col=transp(funky(5)),
cpoint=2, sub="PCA - axes 3 and 4")

PCA - axes 3 and 4

Are the clusters compatible with the results of the PCA? What is the meaning of the 3rd
axis of the PCA? How many dimensions are needed to differentiate the 5 groups?

2.3 Identifying SNPs linked to antibiotic resistance

The data contained in phen indicate whether isolates are susceptible or resistant to a given
antibiotic (S/R):

head (phen, 10)

##t [1] RSSSSSSSSS
## Levels: R S

As we have done with genetic clusters previously, we can represent these two groups on
the PCs to assess whether antibiotic resistance correlates to some components of the genetic
diversity.

15



s.class(pcal$li, fac=phen, col=transp(c("royalblue","red")), cpoint=2,
sub="PCA - axes 1 and 2")

PCA —axes 1 and 2

s.class(pcal$li, xax=3, yax=4, fac=phen, col=transp(c("royalblue","red")),
cpoint=2, sub="PCA - axes 3 and 4")

16



PCA - axes 3 and 4

This visual assessment can be completed by a standard Chi-square test to check if there is
an association between genetic clusters and resistance:

table(phen, pop)

#Hit pop

## phen 1 2 3 4 5
#Hit R 3 1 710 3
#it S 12 14 13 20 12

chisq.test(table(phen, pop), simulate=TRUE)

#i#

## Pearson's Chi-squared test with simulated p-value (based on 2000
## replicates)

#it

## data: table(phen, pop)

## X-squared = 5.227, df = NA, p-value = 0.2779

17



What do you conclude? Is antibiotic resistance correlated to the main genetic features
of these isolates?

It is important to keep in mind that PCA optimizes the representation of the overall
genetic diversity, and does not explicitly look for distinctions between pre-defined groups of
isolates. If only a few loci are correlated to bacterial resistance, PCA may well overlook
these, especially if stronger structures such as separate lineages or populations are present.
To look for combinations of SNPs correlated to a given partition of individuals, DAPC is
much more appropriate. We apply the method using the function dapc, specifying the input
data snps and the groups of individuals to distinguish (susceptible/resistant, phen).

dapcl <- dapc(snps, phen)

The function asks for a number of principal components to retain for the dimension-reduction
step (PCA, retain 30 PCs) and for the subsequent discriminant analysis (DA). For the latter,
only one axis can be retained (the maximum number of axes in DA is always the number of
groups minus 1).

dapcl

T R e RS R e R e R e R e e R
## # Discriminant Analysis of Principal Components #
I i
## class: dapc

## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1, n.pca = 30,
## n.da = 1)
##

## $n.pca: 30 first PCs of PCA used
## $n.da: 1 discriminant functions saved
## $var (proportion of conserved variance): 0.371

##

## $eig (eigenvalues): 116.4 vector length content
## 1 $eig 1 eigenvalues

## 2 $grp 95 prior group assignment

## 3 $prior 2 prior group probabilities
## 4 $assign 95 posterior group assignment
## 5 $pca.cent 10000 centring vector of PCA

## 6 $pca.norm 10000 scaling vector of PCA

## 7 $pca.eig 94 eigenvalues of PCA

##

##  data.frame nrow ncol

## 1 $tab 95 30

## 2 $means 2 30

## 3 $loadings 30 1

## 4 $ind.coord 95 1

18



#H#
##
#it
#it
#it
##
##
##
#it
#t
#it
##
##

0 N o ;o

0 N O O W N -

$grp.coord 2 1

$posterior 95 2
$pca.loadings 10000 30

$var.contr 10000 1

content

retained PCs of PCA

group means

loadings of variables

coordinates of individuals (principal components)
coordinates of groups

posterior membership probabilities
PCA loadings of original variables
contribution of original variables

The function scatter can be used to visualize the results of DAPC. It produces usual

plots of the principal components, using colors and ellipses to indicate groups. However,
whenever only one axis has been retained, scatter plots the density of the individuals on
the first principal component:

scatter(dapcl, bg="white", scree.da=FALSE, scree.pca=TRUE,

posi.pca="topright", col=c("royalblue","red"),
legend=TRUE, posi.leg="topleft")

19
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The contribution of each variable to the separation of the two groups (susceptible/resistant)
is stored in dapcl$var.contr; it can be visualized using loadingplot, which displays all
contributions as bars and annotates variables with the largest contributions (see argument

threshold in ?loadingplot):

loadingplot(dapci$var.contr)
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Loading plot
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|

0.000
|
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Variables

The function also invisibly returns information on the annotated variables.

Recall

loadingplot, specifying a higher threshold so that only the few outlying variables are

retained, and store this result in an object called sel.snps.
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Loading plot
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The object should look like this:

sel.snps

#Ht
#it
##
##
##
#Hit
#t
##
##
##
#Ht
#it
##

$threshold
[1] 0.004

$var.names
[1] ™7197"™ "7199" "7202" "7206" "7207"

$var.idx
7197 7199 7202 7206 7207
7197 7199 7202 7206 7207
$var.values
7197 7199 7202 7206 7207
0.004944 0.004944 0.004944 0.004944 0.004944

Which SNPs are the most strongly correlated to antibiotic resistance?
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The following command derives allelic profiles of these SNPs for each isolate:

sel.profiles <- apply(snps[,sel.snps$var.idx],1,paste,collapse="-")
head(sel.profiles)

#t isolate-1 isolate-2 isolate-3 isolate-4 isolate-5 isolate-6
## "1-1-1-1-1" "0-0-0-0-0" "0-0-0-0-0" "0O-0-0-0-0" "0-0-0-0-0" "0-0-0-0-0"

table(sel.profiles)

## sel.profiles
## 0-0-0-0-0 1-1-1-1-1
#it 71 24

head(cbind.data.frame(phen,sel.profiles),10)

#it phen sel.profiles
## isolate-1 R
## isolate-2
## isolate-3
## isolate—-4
## isolate-5
## isolate-6
## isolate-7
## isolate-8
## isolate-9
## isolate-10

O OO O O O O O O =

~1-1-1-
~0-0-0-
-0-0-0-
-0-0-0-
~0-0-0-
~0-0-0-
~0-0-0-
~0-0-0-
-0-0-0-
-0-0-0-

0NN N N 22 2 L
O OO O O O O O O =

tail(cbind.data.frame(phen,sel.profiles),10)

#it phen sel.profiles
## isolate-86 S
## isolate-87
## isolate-88
## isolate—-89
## isolate-90
## isolate-91
## isolate-92
## isolate-93
## isolate-94
## isolate-95

= =, O O Fr O O O O O

~0-0-0-
-0-0-0-
-0-0-0-
~0-0-0-
~0-0-0-
~1-1-1-
~0-0-0-
-0-0-0-
~1-1-1-
-1-1-1-

= I I S R o B=" IR B P R P B2
R RO ORr OOOO O

A contingency table between phenotype and SNPs profile can be created using table:
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table(phen,sel.profiles)

## sel.profiles

## phen 0-0-0-0-0 1-1-1-1-1
#it R 0 24
#i S 71 0

What can you conclude on these SNPs? Assuming that their position in the dataset
reflects their original position in the genome, would you think that each of these SNPs
actually determines the antibiotic resistance? How would you address this question?
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3 Supplementary exercise

Load the dataset dapcIllus and look at the description of the data in the help page. Try
to answer to following questions:

e When looking for clusters using K-means (preceded by dimension reduction using
PCA), what are the differences in terms of BIC profiles for different population genetics
models?

e What are the differences in the typologies identified by DAPC for different population
genetics models?

e Customizing the scatterplot of DAPC, reproduce and interpret the figure below (based
on dapcIllus$c):

e After looking at what the compoplot function does, reproduce and interpret the
following figure (based on dapcIllus$d):
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What was the model used to simulate these data? What can you say about the number of
clusters in these data, and its characterization by find. clusters and the DAPC scatterplot?
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4 'To go further

DAPC is more extensively covered in a dedicated tutorial which you can access from the
adegenet website:
http://adegenet.r-forge.r-project.org/

or by typing:
adegenetTutorial ("dapc")

The paper presenting the method is in open access online:
http://www.biomedcentral.com/1471-2156/11/94

Lastly, as of version 1.4-0 of adegenet, a web interface for DAPC can be started from
R using:

adegenetServer ("DAPC")
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