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Abstract

This practical provides an introduction to the analysis of spatial genetic structures
using R. Using an empirical dataset of microsatellites sampled from wild goats in the
Bauges mountains (France), we illustrate univariate and multivariate tests of spatial
structures, and then introduce the spatial Principal Component Analysis (sPCA)
for uncovering spatial genetic patterns. For a more complete overview of spatial
genetics methods, see the basics and sPCA tutorials for adegenet, which you can
open using adegenetTutorial("basics") and adegenetTutorial("spca") (with an
internet connection) or from the adegenet website.
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The chamois (Rupicapra rupicapra) is a conserved species in France. The Bauges
mountains is a protected area in which the species has been recently studied. One of the
most important questions for conservation purposes relates to whether individuals from this
area form a single reproductive unit, or whether they are structured into sub-groups, and if
so, what causes are likely to induce this structuring.

While field observations are very scarce and do not allow to answer this question, genetic
data can be used to tackle the issue, as departure from panmixia should result in genetic
structuring. The dataset rupica contains 335 georeferenced genotypes of Chamois from the
Bauges mountains for 9 microsatellite markers, which we propose to analyse in this exercise.

1 An overview of the data

We first load some required packages and the data:

library(ade4)

library(adegenet)

library(spdep)

library(adehabitat)

data(rupica)

rupica

##

## #####################

## ### Genind object ###

## #####################

## - genotypes of individuals -

##

## S4 class: genind

## @call: NULL

##

## @tab: 335 x 55 matrix of genotypes

##

## @ind.names: vector of 335 individual names

## @loc.names: vector of 9 locus names

## @loc.nall: number of alleles per locus

## @loc.fac: locus factor for the 55 columns of @tab

## @all.names: list of 9 components yielding allele names for each locus

## @ploidy: 2

## @type: codom

##

## Optional contents:

## @pop: - empty -

## @pop.names: - empty -

##

## @other: a list containing: xy mnt showBauges
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rupica is a typical genind object, which is the class of objects storing genotypes (as
opposed to population data) in adegenet. rupica also contains topographic information
about the sampled area, which can be displayed by calling rupica$other$showBauges. For
instance, the spatial distribution of the sampling can be displayed as follows:

rupica$other$showBauges()

points(rupica$other$xy, col="red",pch=20)

 500 

 500 

 500 

 500 

 1000 

 1000 

 1
00

0 

 1000 

 1
50

0 

 1
50

0 

 1500 

 1500 

 1
50

0 

 1500 

 1500 

 2000 

 2
00

0 

5 km N

●

●

●

●

●
●

●

●
●

●

●

● ●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●● ●

● ●
●

●

●●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

This spatial distribution is clearly not random, but seems arranged into loose clusters.
However, superimposed samples can bias our visual assessment of the spatial clustering. Use
a two-dimensional kernel density estimation (function s.kde2d) to overcome this possible
issue.

rupica$other$showBauges()

s.kde2d(rupica$other$xy,add.plot=TRUE)

points(rupica$other$xy, col="red",pch=20)
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Is geographical clustering strong enough to assign safely each individual to a group?
Accordingly, shall we analyse these data at individual or group level?

2 Summarising the genetic diversity

As a prior clustering of genotypes is not known, we cannot employ usual FST -based
approaches to detect genetic structuring. However, genetic structure could still result in
a deficit of heterozygosity. Use the summary of genind objects to compare expected and
observed heterozygosity:

rupica.smry <- summary(rupica)

##

## # Total number of genotypes: 335

##

## # Population sample sizes:

##

## 335
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##

## # Number of alleles per locus:

## L1 L2 L3 L4 L5 L6 L7 L8 L9

## 7 10 7 6 5 5 6 4 5

##

## # Number of alleles per population:

## 1

## 55

##

## # Percentage of missing data:

## [1] 0

##

## # Observed heterozygosity:

## L1 L2 L3 L4 L5 L6 L7 L8 L9

## 0.5881 0.6209 0.5254 0.7582 0.6597 0.5284 0.6299 0.5552 0.4149

##

## # Expected heterozygosity:

## L1 L2 L3 L4 L5 L6 L7 L8 L9

## 0.6077 0.6533 0.5315 0.7260 0.6602 0.5706 0.6413 0.5473 0.4071

plot(rupica.smry$Hexp, rupica.smry$Hobs, main="Observed vs expected heterozygosity")

abline(0,1,col="red")
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The red line indicate identity between both quantities. What can we say about
heterozygosity in this population? How can this be tested? The result below can be
reproduced using a standard testing procedure:

t.test(rupica.smry$Hexp, rupica.smry$Hobs,paired=TRUE,var.equal=TRUE)

##

## Paired t-test

##

## data: rupica.smry$Hexp and rupica.smry$Hobs

## t = 0.9461, df = 8, p-value = 0.3718

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.01025 0.02451

## sample estimates:

## mean of the differences

## 0.007131
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We can seek a global picture of the genetic diversity among genotypes using a Principal
Component Analysis (PCA, [4, 2], dudi.pca in ade4 package). The analysis is performed
on a table of standardised alleles frequencies, obtained by scaleGen. Remember to disable
the scaling option when performing the PCA. The function dudi.pca displays a barplot of
eigenvalues and asks for a number of retained principal components:

rupica.X <- scaleGen(rupica)

rupica.pca1 <- dudi.pca(rupica.X, cent=FALSE, scale=FALSE, scannf=FALSE, nf=2)

barplot(rupica.pca1$eig)

0.
0

0.
5

1.
0

1.
5

The output produced by dudi.pca is a dudi object. A dudi object contains various
information; in the case of PCA, principal axes (loadings), principal components (synthetic
variable), and eigenvalues are respectively stored in $c1, $li, and $eig slots. Here is the
content of the PCA:

rupica.pca1

## Duality diagramm
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## class: pca dudi

## $call: dudi.pca(df = rupica.X, center = FALSE, scale = FALSE, scannf = FALSE,

## nf = 2)

##

## $nf: 2 axis-components saved

## $rank: 45

## eigen values: 1.561 1.34 1.168 1.097 1.071 ...

## vector length mode content

## 1 $cw 55 numeric column weights

## 2 $lw 335 numeric row weights

## 3 $eig 45 numeric eigen values

##

## data.frame nrow ncol content

## 1 $tab 335 55 modified array

## 2 $li 335 2 row coordinates

## 3 $l1 335 2 row normed scores

## 4 $co 55 2 column coordinates

## 5 $c1 55 2 column normed scores

## other elements: cent norm

In general, eigenvalues represent the amount of genetic diversity — as measured by the
multivariate method being used — represented by each principal component (PC). Verify
that here, each eigenvalue is the variance of the corresponding PC.

head(rupica.pca1$eig)

## [1] 1.561 1.340 1.168 1.097 1.071 1.018

apply(rupica.pca1$li,2,var)*334/335

## Axis1 Axis2

## 1.561 1.340

An abrupt decrease in eigenvalues is likely to indicate the boundary between true
patterns and non-interpretable structures. In this case, how many PCs would you interprete?

Use s.label to display to two first components of the analysis. Then, use a kernel density
(s.kde2d) for a better assessment of the distribution of the genotypes onto the principal axes:

s.label(rupica.pca1$li)

s.kde2d(rupica.pca1$li, add.p=TRUE, cpoint=0)

add.scatter.eig(rupica.pca1$eig,2,1,2)
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What can we say about the genetic diversity among these genotypes as inferred by PCA?
The function loadingplot allows to visualize the contribution of each allele, expressed as
squared loadings, for a given principal component. Using this function, reproduce this figure:

loadingplot(rupica.pca1$c1^2)
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What do we observe? We can get back to the genotypes for the concerned markers (e.g.,
Bm203) to check whether the highlighted genotypes are uncommon. truenames extracts the
table of allele frequencies from a genind object (restoring original labels for markers, alleles,
and individuals):

X <- truenames(rupica)

class(X)

## [1] "matrix"

dim(X)

## [1] 335 55

bm203.221 <- X[,"Bm203.221"]

table(bm203.221)

## bm203.221

## 0 0.00597014925373134 0.5

## 330 1 4
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Only 4 genotypes possess one copy of the allele 221 of marker bm203 (the second result
corresponds to a replaced missing data). Which individuals are they?

rownames(X)[bm203.221==0.5]

## 001 019 029 276

## "8" "86" "600" "7385"

Conclusion?

3 Mapping and testing PCA results

A frequent practice in spatial genetics is mapping the first principal components (PCs) onto
the geographic space. The function s.value is well-suited to do so, using black and white
squares of variable size for positive and negative values. To give a legend for this type of
representation:

s.value(cbind(1:11,rep(1,11)), -5:5, cleg=0)

text(1:11,rep(1,11), -5:5, col="red",cex=1.5)
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 d = 2 
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Apply this graphical representation to the first two PCs of the PCA:

showBauges <- rupica$other$showBauges

showBauges()

s.value(rupica$other$xy, rupica.pca1$li[,1], add.p=TRUE, cleg=0.5)

title("PCA - first PC",col.main="yellow" ,line=-2, cex.main=2)
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showBauges()

s.value(rupica$other$xy, rupica.pca1$li[,2], add.p=TRUE, csize=0.7)

title("PCA - second PC",col.main="yellow" ,line=-2, cex.main=2)
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What can we say about spatial genetic structure as inferred by PCA? This visual assessment
can be complemented by testing the spatial autocorrelation in the first PCs of PCA. This
can be achieved using Moran’s I test. Use the function moran.mc in the package spdep to
perform these tests. You will need first to define the spatial connectivity between the sampled
individuals. For these data, spatial connectivity is best defined as the overlap between
home ranges of individuals. Home ranges will be modelled as disks with a radius of 1150m.
Use chooseCN to create a connection network based on distance range (“neighbourhood
by distance”). What threshold distance do you choose for individuals to be considered as
neighbours?

rupica.graph <- chooseCN(rupica$other$xy,type=5,d1=0,d2=2300, plot=FALSE,

res="listw")

The connection network should ressemble this:

rupica.graph

## Characteristics of weights list object:

## Neighbour list object:
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## Number of regions: 335

## Number of nonzero links: 18018

## Percentage nonzero weights: 16.06

## Average number of links: 53.79

##

## Weights style: W

## Weights constants summary:

## n nn S0 S1 S2

## W 335 112225 335 15.04 1352

plot(rupica.graph, rupica$other$xy)

title("rupica.graph")
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rupica.graph

Perform Moran’s test for the first two PCs, and plot the results. The first test should be
significant:

pc1.mctest <- moran.mc(rupica.pca1$li[,1], rupica.graph, 999)

plot(pc1.mctest)
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Compare this result to the mapping of the first PC of PCA. What is wrong? When a test
gives unexpected results, it is worth looking into the data in more details. Moran’s plot
(moran.plot) plots the tested variable against its lagged vector. Use it on the first PC:

moran.plot(rupica.pca1$li[,1], rupica.graph)
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Actual positive autocorrelation corresponds to a positive correlation between a variable and
its lag vector. Is it the case here? How can we explain that Moran’s test was significant?

Repeat these analyses for the second PC. What are your conclusions?

pc2.mctest <- moran.mc(rupica.pca1$li[,2], rupica.graph, 999)

plot(pc2.mctest)
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4 Multivariate tests of spatial structure

So far, we have only tested the existence of spatial structures in the first two principal
components of a PCA of the data. Therefore, these tests only describe one fragment of the
data, and do not encompass the whole diversity in the data. As a complement, we can use
Mantel test (mantel.randtest) to test spatial structures in the whole data, by assessing the
correlation between genetic distances and geographic distances. Pairwise Euclidean distances
are computed using dist. Perform Mantel test, using the scaled genetic data you used before
in PCA, and the geographic coordinates.

mtest <- mantel.randtest(dist(rupica.X), dist(rupica$other$xy))

plot(mtest, nclass=30)
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What is your conclusion? Shall we be looking for spatial structures? If so, how can we
explain that PCA did not reveal them?

5 spatial Principal Component Analysis

The spatial Principal Component Analysis (sPCA, function spca [3]) has been especially
developed to investigate hidden or non-obvious spatial genetic patterns. Like Moran’s I test,
sPCA first requires the spatial proximities between genotypes to be modeled. You will reuse
the connection network defined previously using chooseCN, and pass it as the ’cn’ argument
of the function spca.

Read the documentation of spca, and apply the function to the dataset rupica. The
function will display a barplot of eigenvalues:

rupica.spca1 <- spca(rupica, cn=rupica.graph,scannf=FALSE, nfposi=2,nfnega=0)

barplot(rupica.spca1$eig, col=rep(c("red","grey"), c(2,1000)) )
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This figure illustrates the fundamental difference between PCA and sPCA. Like dudi.pca,
spca displays a barplot of eigenvalues, but unlike in PCA, eigenvalues of sPCA can also
be negative. This is because the criterion optimized by the analysis can have positive and
negative values, corresponding respectively to positive and negative autocorrelation. Positive
spatial autocorrelation correspond to greater genetic similarity between geographically closer
individuals. Conversely, negative spatial autocorrelation corresponds to greater dissimilarity
between neighbours. The spatial autocorrelation of a variable is measured by Moran’s I, and
interpreted as follows:

• I0 = −1/(n− 1): no spatial autocorrelation (x is randomly distributed across space)

• I > I0: positive spatial autocorrelation

• I < I0: negative spatial autocorrelation

Principal components of PCA ensure that (φ referring to one PC) var(φ) is maximum.
By contrast, sPCA provides PC which decompose the quantity var(φ)I(φ). In other words,
PCA focuses on variability only, while sPCA is a compromise between variability (var(φ))
and spatial structure (I(φ)).
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In this case, only the principal components associated with the two first positive
eigenvalues (in red) shall be retained. The printing of spca objects is more explicit than
dudi objects, but named with the same conventions:

rupica.spca1

## ########################################

## # spatial Principal Component Analysis #

## ########################################

## class: spca

## $call: spca(obj = rupica, cn = rupica.graph, scannf = FALSE, nfposi = 2,

## nfnega = 0)

##

## $nfposi: 2 axis-components saved

## $nfnega: 0 axis-components saved

## Positive eigenvalues: 0.03018 0.01408 0.009211 0.006835 0.004529 ...

## Negative eigenvalues: -0.008611 -0.006414 -0.004451 -0.003963 -0.003329 ...

##

## vector length mode content

## 1 $eig 45 numeric eigenvalues

##

## data.frame nrow ncol

## 1 $c1 55 2

## 2 $li 335 2

## 3 $ls 335 2

## 4 $as 2 2

## content

## 1 principal axes: scaled vectors of alleles loadings

## 2 principal components: coordinates of entities ('scores')

## 3 lag vector of principal components

## 4 pca axes onto spca axes

##

## $xy: matrix of spatial coordinates

## $lw: a list of spatial weights (class 'listw')

##

## other elements: NULL

Unlike usual multivariate analyses, eigenvalues of sPCA are composite: they measure both
the genetic diversity (variance) and the spatial structure (spatial autocorrelation measured
by Moran’s I). This decomposition can also be used to choose which principal component
to interprete. The function screeplot allows to display this information graphically:

screeplot(rupica.spca1)
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While λ1 indicates with no doubt a structure, the second eigenvalue, λ2 is less clearly distinct
from the successive values. Thus, we shall keep in mind this uncertainty when interpreting
the second principal component of the analysis.

Try visualising the sPCA results as you did before with the PCA results. To clarify the
possible spatial patterns, you can map the lagged PC ($ls) instead of the PC ($li), which are
a ’denoisified’ version of the PCs.

First, map the first principal component of sPCA. How would you interprete this result?
How does it compare to the first PC of PCA? What inferrence can we make about the way
the landscape influences gene flow in this population of Chamois?

Do the same with the second PC of sPCA. Some field observations suggest that this
pattern is not artefactual. How would you interprete this second structure?

To finish, you can try representing both structures at the same time using the color coding
introduced by [1] (?colorplot). The final figure should ressemble this (although colors may
change from one computer to another):
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showBauges()

colorplot(rupica$other$xy, rupica.spca1$ls, axes=1:2, transp=TRUE, add=TRUE,

cex=2)

title("sPCA - colorplot of PC 1 and 2\n(lagged scores)", col.main="yellow",

line=-2, cex=2)
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6 To go further

More spatial genetics methods and are presented in the basics tutorial as well as in the
tutorial dedicated to sPCA, which you can access from the adegenet website:
http://adegenet.r-forge.r-project.org/

or by typing:

adegenetTutorial("basics")

adegenetTutorial("spca")
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