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Abstract

This practical aims to illustrate the basics of phylogenetic reconstruction using ,
with an emphasis on how the methods work, how their results can be interpreted,
and the relative advantages and limitations of the methods. Three main classes
of phylogenetic approaches are introduced, namely distance-based, maximum
parsimony, and maximum likelihood methods. We also illustrate how to assess
the reliability of individual nodes using bootstrap, and show how a simple linear model
can be used to estimate a molecular clock in rooted phylogenies. Methods are illustrated
using a dataset of seasonal influenza isolates sampled in the US from 1993 to 2008.
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1 Introduction

1.1 Phylogenetics in a nutshell

The reconstruction of evolutionary relationships of a set of organisms can be a tricky task,
and has led to the development of a variety of methods over the last decades, implemented
in an even larger number of software. However, these methods can be classified into three
main categories:

e distance-based methods: compute a matrix of pairwise genetic distances between
the studied taxa, and summarize it using a hierarchical clustering algorithm such as
UPGMA or Neighbour-Joining. Advantages: fast (the fastest) and flexible (different
genetic distances allow to account for different features of DNA sequence evolution).
Limitations: no model comparison (can’t test for the ’best’ tree, or the ’best’ model
of evolution); may be inaccurate and highly dependent on the distance and clustering
algorithm chosen.

e maximum parsimony: seeks the tree with the smallest number of overall genetic
changes between the taxa. This is achieved by changing randomly the topology of
the tree until parsimony is no longer improved. Advantages: intuitive interpretation
(assumes that the simplest scenario is the most likely), usually accurate when the
amount of genetic changes is small. Limitations: computer-intensive, simplistic model
of evolution, no model comparison, inaccurate when substantial evolution takes place,
and when heterogeneous mutation rates exist in different parts of the tree.

e likelihood-based method: based on a model of sequence evolution which allows
to compute a likelihood, that is, the probability of observing the data given the
model and a set of parameters. There are two main branches of likelihood-based
methods: maximum likelihood and Bayesian methods. The first seeks the 'best’ tree
and parameter values, i.e. the one maximizing the likelihood. The second derives
samples of trees and model parameters which are the most consistent with the data
and possible prior knowledge about the tree/parameters. Advantages: flexible (any
model of evolution can be used), usually accurate, model selection possible, measure
of uncertainty (in Bayesian approaches). Limitations: computer-intensive, model
selection possibly cumbersome.

Ge : . .
The @ software implements one of the largest selections of phylogenetic methods,
including all of the above except for Bayesian reconstruction.

1.2 Required packages

This practical requires a working version of @ [6] greater than or equal to 2.15.2. It
uses the following packages: stats implements basic hierarchical clustering routines, ades [1]
and adegenet [2] are here used essentially for their graphics, ape [5] is the core package for
phylogenetics, and phangorn [7] implements parsimony and likelihood-based methods. Make
sure that the dependencies are installed as well when installing the packages:



install.packages("adegenet", dep=TRUE)
install.packages("phangorn", dep=TRUE)

Then load the packages using:

library(stats)
library(ade4)
library(ape)
library(adegenet)
library(phangorn)

1.3 The data

The data used in this practical are DNA sequences of seasonal influenza (H3N2) downloaded
from Genbank (http://www.ncbi.nlm.nih.gov/genbank/). Alignments have been realized
beforehand using standard tools (Clustalw2 for basic alignment and Jalview for refining the
results). We selected 80 isolates genotyped for the hemagglutinin (HA) segment sampled in
the US from 1993 to 2008. The dataset consists of two files: i) usflu.fasta, a file containing
aligned DNA sequences and ii) usflu.annot.csv, a comma-separated file containing useful
annotations of the sequences. Both files are available online from the adegenet website:

e DNA sequences: http://adegenet.r-forge.r-project.org/files/usflu.fasta
e annotations: http://adegenet.r-forge.r-project.org/files/usflu.annot.csv

To read the DNA sequences into R, we use fasta2DNAbin from the adegenet package:
dna <- fasta2DNAbin(file="http://adegenet.r-forge.r-project.org/files/usflu.fasta")

#it

## Converting FASTA alignment into a DNAbin object...
it

#it

## Finding the size of a single genome...

#i#t

#i#t

## genome size is: 1,701 nucleotides

#it

## ( 30 lines per genome )

#i#t

## Importing sequences...

i3 0 000000000000006605000000000a0aa00000000000600000006006000000a0aa0000300000000dIRREREEEEEE
## Forming final object...

HH

## ...done.


http://www.ncbi.nlm.nih.gov/genbank/
http://adegenet.r-forge.r-project.org/files/usflu.fasta
http://adegenet.r-forge.r-project.org/files/usflu.annot.csv

dna

## 80 DNA sequences in binary format stored in a matrix.

#i#

## All sequences of same length: 1701

#it

## Labels: CY013200 CY013781 CY012128 CY013613 CY012160 CY012272 ...
#i#

## Base composition:

#it a © g t

## 0.335 0.200 0.225 0.239

class(dna)
## [1] "DNAbin"

Sequences are stored as DNAbin objects, an efficient representation of DNA/RNA
sequences which use bytes (as opposed to character strings) to code nucleotides, resulting
in considerable savings in terms of memory required to store the data. While the present
dataset is very small, such compression can become essential for larger genomes (bacterial
genomes are typically a few millions of nucleotides long). Note that for even larger datasets,
more efficient data reduction can be achieved using the bit-level coding of polymorphic sites
implemented in adegenet [3].

The annotation file is read in R using the standard procedure:

annot <- read.csv("http://adegenet.r-forge.r-project.org/files/usflu.annot.csv",
header=TRUE, row.names=1, stringsAsFactors=FALSE)

head (annot)

##  accession year misc
## 1 CY013200 1993 (A/New York/783/1993(H3N2))
## 2 CY013781 1993 (A/New York/802/1993(H3N2))
## 3 CY012128 1993 (A/New York/758/1993(H3N2))
## 4 CY013613 1993 (A/New York/766/1993(H3N2))
## 5 CY012160 1993 (A/New York/762/1993(H3N2))
## 6 CY012272 1994 (A/New York/729/1994 (H3N2))

accession contains the Genbank accession numbers, which are unique sequence
identifiers; year is the year of collection of the isolates; misc contains other possibly useful
information. Before going further, we check that isolates are identical in both files (accession
numbers are used as labels for the sequences):



dim(dna)

## [1] 80 1701

dim(annot)

## [1] 80 3

all (annot$accession==rownames (dna))
## [1] TRUE

table(annot$year)

#it
## 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
#i#t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Good! The data we will analyse are 80 isolates (5 per year) typed for the same 1701
nucleotides.



2 Distance-based phylogenies

Distance-based phylogenetic reconstruction consists in i) computing pairwise genetic
distances between individuals (here, isolates), ii) representing these distances using a tree,
and iii) evaluating the relevance of this representation.

2.1 Computing genetic distances

We first compute genetic distances using ape’s dist.dna, which proposes no less than 15
different genetic distances (see ?dist.dna for details). Here, we use Tamura and Nei 1993’s
model [8] which allows for different rates of transitions and transversions, heterogeneous base
frequencies, and between-site variation of the substitution rate.

D <- dist.dna(dna, model="TN93")
class(D)

## [1] "dist"
length(D)
## [1] 3160

D is an object of class dist which contains the distances between every pairs of sequences.

Now that genetic distances between isolates have been computed, we need to visualize
this information. There are n(n — 1)/2 distances for n sequences; here, n = 80 so that
the genetic relationships between the sampled isolates are described by 80 x 79/2 = 3160
pairwise distances. Most of the time, summarising such information is not entirely trivial.
The simplest approach is plotting directly the matrix of pairwise distances:

temp <- as.data.frame(as.matrix(D))
table.paint(temp, cleg=0, clabel.row=.5, clabel.col=.5)
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Darker shades of grey represent greater distances. Note that to use image to produce similar
plots, data need to be transformed first; for instance:

temp <- t(as.matrix(D))
temp <- temp[,ncol(temp) :1]

par (mar=c(1,5,5,1))

image(x=1:80, y=1:80, temp, col=rev(heat.colors(100)), xaxt="n", yaxt="n",
xlab="",ylab=" )

axis(side=2, at=1:80, lab=rev(rownames(dna)), las=2, cex.axis=.5)

axis(side=3, at=1:80, lab=rownames(dna), las=3, cex.axis=.5)
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(see image.plot in the package fields for similar plots with a legend).

Since the data are roughly ordered by year, we can already see some genetic structure
appearing, but this is admittedly not the most satisfying or informative approach, and tells
us little about the evolutionary relationships between our isolates.

2.2 Building trees

We use trees to get a better representation of the genetic distances between individuals. It
is important, however, to bear in mind that the obtained trees are not necessarily efficient
representations of the original distances, and information can —and likely will— be lost in
the process.

A wide array of algorithms for constructing trees from a distance matrix are available in

@, including;:

e nj (ape package): the classical Neighbor-Joining algorithm.
e bionj (ape): an improved version of Neighbor-Joining.

e fastme.bal and fastme.ols (ape): minimum evolution algorithms.



e hclust (stats): classical hierarchical clustering algorithms including single linkage,
complete linkage, UPGMA, and others.

Here, we go for the standard:

tre <- nj(D)
class(tre)

## [1] "phylo"

tre <- ladderize(tre)
tre

##

## Phylogenetic tree with 80 tips and 78 internal nodes.

##

## Tip labels:

## CY013200, CY013781, CY012128, CY013613, CY012160, CY012272,
##

## Unrooted; includes branch lengths.

plot(tre, cex=.6)
title("A simple NJ tree")
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A simple NJ tree
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Trees created in the package ape are instances of the class phylo. See ?read.tree for a
description of this class.

2.3 Plotting trees

The plotting method offers many possibilities for plotting trees; see ?plot.phylo for more
details. Functions such as tiplabels, nodelabels, edgelabels and axisPhylo can also be
useful to annotate trees. For instance, we may simply represent years using different colors
(red=ancient; blue=recent):

plot(tre, show.tip=FALSE)

title("Unrooted NJ tree")

myPal <- colorRampPalette(c("red","yellow","green","blue"))

tiplabels(annot$year, bg=num2col (annot$year, col.pal=myPal),
cex=.5)

temp <- pretty(1993:2008, 5)

11



legend("bottomleft", fill=num2col(temp, col.pal=myPal),
leg=temp, ncol=2)

Unrooted NJ tree

W 1990 @ 2005
0O 1995 m 2010
0O 2000

This illustrates a common mistake when interpreting phylogenetic trees. In the above figures,
we tend to assume that the left-side of the phylogeny is ‘ancestral’, while the right-side is
‘recent’. This is wrong —as suggested by the colors— unless the phylogeny is actually rooted,
i.e. some external taxa has been used to define what is the most ‘ancient’ split in the tree.
The present tree is not rooted, and should be better represented as such:

plot(tre, type="unrooted", show.tip=FALSE)

title("Unrooted NJ tree")

tiplabels(tre$tip.label, bg=num2col(annot$year, col.pal=myPal),
cex=.5)
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Unrooted NJ tree

In the present case, a sensible rooting would be any of the most ancient isolates (from
1993). We can take the first one:

head (annot)

##  accession year misc
## 1 CY013200 1993 (A/New York/783/1993(H3N2))
## 2 CY013781 1993 (A/New York/802/1993(H3N2))
## 3 CY012128 1993 (A/New York/758/1993(H3N2))
## 4 CY013613 1993 (A/New York/766/1993(H3N2))
## 5 CY012160 1993 (A/New York/762/1993(H3N2))
## 6 CY012272 1994 (A/New York/729/1994 (H3N2))

tre2 <- root(tre, out=1)
tre2 <- ladderize(tre2)

and plot the result:
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plot(tre2, show.tip=FALSE, edge.width=2)
title("Rooted NJ tree")
tiplabels(tre$tip.label, bg=transp(num2col(annot$year, col.pal=myPal),.7),
cex=.5, fg="transparent")
axisPhylo ()
temp <- pretty(1993:2008, 5)
legend ("topright", fill=transp(num2col(temp, col.pal=myPal),.7),
leg=temp, ncol=2)

Rooted NJ tree

@ 1990 @ 2005
0O 1995 B 2010
0O 2000

0.06 0.04 0.02 0

The phylogeny is now rooted. The shape of this tree is typical of influenza. What can
you say about the evolution of influenza and the fitness of different viral lineages, based on
this tree? What does the “trunk” of this tree represent? Would there be any interest in

14



predicting the genome of the trunk?

2.4 Estimating a molecular clock

Rooted trees are also useful for assessing the rate of evolution of a given gene. We call
molecular clock the accumulation of mutations over time. Can you visually assess if there are
signs of a molecular clock in this tree? A quantitative analysis is very easy to perform, and
merely relies on regressing the number of mutations from the root to the time of divergence
from the root:

mutFromRoot <- as.matrix(dist.dna(dna, model="N"))[1,]

yearFromRoot <- annot$year-annot$year[1]

plot (mutFromRoot~yearFromRoot, xlab="Years from the root",
ylab="Mutations from the root", main="H3N2 molecular clock")

1m.clock <- lm(mutFromRoot~-1+yearFromRoot)

abline(lm.clock, col="blue",lwd=2)

H3N2 molecular clock
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summary (1m.clock)

##

## Call:

## 1m(formula = mutFromRoot ~ -1 + yearFromRoot)

##

## Residuals:

H#t Min 1Q Median 3Q Max

## -12.33 -1.58 1.00 6.39 13.00

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## yearFromRoot  7.7327 0.0744 104  <2e-16 **x
## ———

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1
##

## Residual standard error: 5.86 on 79 degrees of freedom
## Multiple R-squared: 0.993,Adjusted R-squared: 0.993
## F-statistic: 1.08e+04 on 1 and 79 DF, p-value: <2e-16

1m.clock$coefficients

## yearFromRoot
## 7.733

1m.clock$coefficients/ncol (dna)

## yearFromRoot
Hit 0.004546

365/ 1lm.clock$coefficients

## yearFromRoot
## 47.2

What is the substitution rate per year for the HA segment? What is the substitution rate
per year and per site? On average, how many days would you expect to wait before observing
one mutation on a transmission chain? Knowing that the generation time of influenza
is roughly around 2-3 days, would you recommend using HA sequences for reconstructing
transmission trees of influenza epidemics? What alternative would you suggest?

2.5 Assessing the quality of a phylogeny

Many genetic distances and hierarchical clustering algorithms can be used to build trees; not
all of them are appropriate for a given dataset. Genetic distances rely on hypotheses about
the evolution of DNA sequences which should be taken into account. For instance, the mere
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proportion of differing nucleotides between sequences (model=’raw’ in dist.dna) is easy to
interprete, but only makes sense if all substitutions are equally frequent. In practice, simple
yet flexible models such as that of Tamura and Nei (1993, [8]) are probably fair choices. At
the very least, the genetic distance used should allow different rates for transitions (a < g,
¢ <> t) and transversions (other changes).

Once one has chosen an appropriate genetic distance and built a tree using this distance,
an essential yet most often overlooked question is whether this tree actually is a good
representation of the original distance matrix. This is easily investigated using simple biplots
and correlation indices. The function cophenetic is used to compute distances between the
tips of the tree. Note that more distances are available in the adephylo package (see distTips
function).

x <- as.vector(D)

y <- as.vector(as.dist(cophenetic(tre2)))

plot(x, y, xlab="original pairwise distances", ylab="pairwise distances on the tree",
main="Is NJ appropriate?", pch=20, col=transp("black",.1), cex=3)

abline(1lm(y~x), col="red")

Is NJ appropriate?

pairwise distances on the tree
0.04 0.06 0.08
| | |

0.02
|

0.00
|

I T T T I
0.00 0.02 0.04 0.06 0.08

original pairwise distances
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cor(x,y) "2

## [1] 0.9975

As it turns out, our Neighbor-Joining tree (tre2) is a very good representation of the chosen
genetic distances. Things would have been different had we chosen, for instance, UPGMA:

tre3 <- as.phylo(hclust(D,method="average"))

y <- as.vector(as.dist(cophenetic(tre3)))

plot(x, y, xlab="original pairwise distances", ylab="pairwise distances on the tree"
main="Is UPGMA appropriate?", pch=20, col=transp("black",.l), cex=3)

abline(1lm(y~x), col="red")

Is UPGMA appropriate?

0.02 0.03 0.04 0.05

pairwise distances on the tree

0.01

0.00
|

I T T T I
0.00 0.02 0.04 0.06 0.08

original pairwise distances

cor(x,y) "2

## [1] 0.7393

In this case, UPGMA is a poor choice. Why is this? A first explanation is that UPGMA
forces ultrametry (all the tips are equidistant to the root):
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plot(tre3, cex=.5)
title ("UPGMA tree")

UPGMA tree
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The underlying assumption is that all lineages have undergone the same amount of evolution,
which is obviously not the case in seasonal influenza sampled over 16 years.

Another validation of phylogenetic trees, much more commonly used, is bootstrap.
Bootstrapping a phylogeny consists in sampling the nucleotides with replacement, rebuilding
the phylogeny, and checking if the original nodes are present in the bootstrapped trees. In
practice, this procedure is repeated a large number of times (e.g. 100, 1000), depending
on how computer-intensive the phylogenetic reconstruction is. The underlying idea is to
assess the variability in the obtained topology which results from conducting the analyses
on a random sample the genome. Note that the assumption that the analysed sequences
represent a random sample of the genome is often dubious. For instance, this is not the
case in our toy dataset, since HA segment has a different rate of evolution and experiences
different selective pressures from other segments of the influenza genome. We nonetheless
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illustrate the procedure, implemented by boot.phylo:

myBoots <- boot.phylo(tre2, dna, function(e)
root(nj(dist.dna(e, model = "TN93")),1))
myBoots

The output gives the number of times each node was identified in bootstrapped analyses
(the order is the same as in the original object). It is easily represented using nodelabels

plot(tre2, show.tip=FALSE, edge.width=2)

title("NJ tree + bootstrap values")

tiplabels(frame="none", pch=20,
col=transp(num2col (annot$year, col.pal=myPal),.7),
cex=3, fg="transparent")

axisPhylo ()

temp <- pretty(1993:2008, 5)

legend ("topright", fill=transp(num2col(temp, col.pal=myPal),.7),

leg=temp, ncol=2)
nodelabels (myBoots, cex=.6)
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NJ tree + bootstrap values

@ 1990 @ 2005
0O 1995 W 2010
0O 2000

0.06 0.04 0.02 0

As we can see, some nodes are very poorly supported. One common practice is to collapse
these nodes into multifurcations. There is no dedicated method for this in ape, but one
simple workaround consists in setting the corresponding edges to a length of zero (here, with
bootstrap < 70%), and then collapsing the small branches:

temp <- tre2

N <- length(tre2$tip.label)

toCollapse <- match(which(myBoots<70)+N, temp$edgel,2])
temp$edge . length[toCollapse] <- O

tre3 <- di2multi(temp, tol=0.00001)

The new tree might be slightly less informative, but more robust than the previous one:

plot(tre3, show.tip=FALSE, edge.width=2)
title("NJ tree after collapsing weak nodes")
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tiplabels(tre3$tip.label, bg=transp(num2col (annot$year, col.pal=myPal),.7),
cex=.5, fg="transparent")
axisPhylo()

temp <- pretty(1993:2008, 5)
legend("topright", fill=transp(num2col(temp, col.pal=myPal),.7),
leg=temp, ncol=2)

NJ tree after collapsing weak nodes

@ 1990 @ 2005
0O 1995 W 2010
0O 2000

0.06 0.04 0.02 0
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3 Maximum parsimony phylogenies

3.1 Introduction

Phylogenetic reconstruction based on parsimony seeks trees which minimize the total number
of changes (substitutions) from ancestors to descendents. While a number of criticisms can
be made to this approach, it is a simple way to infer phylogenies for data which display low
divergence (i.e. most taxa differ from each other by only a few nucleotides, and the overall
substitution rate is low).

In practice, there is often no way to perform an exhaustive search amongst all possible
trees to find the most parsimonious one, and heuristic algorithms are used to browse the
space of possible trees. The strategy is fairly simple: i) initialize the algorithm using a tree
and ii) make small changes to the tree and retain those leading to better parsimony, until
the parsimony score stops improving.

3.2 Implementation

Parsimony-based phylogenetic reconstruction is implemented in the package phangorn. It
requires a tree (in ape’s format, i.e. a phylo object) and the original DNA sequences in
phangorn’s own format, phyDat. We convert the data and generate a tree to initialize the
method:

dna2 <- as.phyDat(dna)
class(dna2)

## [1] "phyDat"
dna2

## 80 sequences with 1701 character and 269 different site patterns.
## The states are a c g t

tre.ini <- nj(dist.dna(dna,model="raw"))

tre.ini

##

## Phylogenetic tree with 80 tips and 78 internal nodes.
##

## Tip labels:

## CY013200, CY013781, CY012128, CY013613, CY012160, CY012272,
#it

## Unrooted; includes branch lengths.

The parsimony of a given tree is given by:

23



parsimony(tre.ini, dna2)
## [1] 422

Then, optimization of the parsimony is achieved by:
tre.pars <- optim.parsimony(tre.ini, dna2)

## Final p-score 420 after 2 nni operations

tre.pars

##

## Phylogenetic tree with 80 tips and 78 internal nodes.
##

## Tip labels:

## CY013200, CY013781, CY012128, CY013613, CY012160, CY012272,
##

## Unrooted; no branch lengths.

Here, the final result is very close to the original tree. The obtained tree is unrooted and
does not have branch lengths, but it can be plotted as previously:

plot(tre.pars, type="unr", show.tip=FALSE, edge.width=2)
title("Maximum-parsimony tree")
tiplabels(tre.pars$tip.label, bg=transp(num2col(annot$year, col.pal=myPal),.7),
cex=.5, fg="transparent")
temp <- pretty(1993:2008, 5)
legend ("bottomright", fill=transp(num2col(temp, col.pal=myPal),.7),
leg=temp, ncol=2, bg=transp("white"))
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Maximum-—parsimony tree

[cve0s73]

@ 1990 @ 2005
0O 1995 B 2010
0O 2000

In this case, parsimony gives fairly consistent results with other approaches, which is only
to be expected whenever the amount of divergence between the sequences is fairly low, as is
the case in our data.
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4 Maximum likelihood phylogenies

4.1 Introduction

Maximum likelihood phylogenetic reconstruction is somehow similar to parsimony methods
in that it browses a space of possible tree topologies looking for the "best’ tree. However, it
offers far more flexibility in that any model of sequence evolution can be taken into account.
Given one model of evolution, one can compute the likelihood of a given tree, and therefore
optimization procedures can be used to infer both the most likely tree topology and model
parameters.

As in distance-based methods, model-based phylogenetic reconstruction requires thinking
about which parameters should be included in a model. Usually, all possible substitutions
are allowed to have different rates, and the substitution rate is allowed to vary across sites
according to a gamma distribution. We refer to this model as GTR + I'(4) (GTR: global
time reversible). More information about phylogenetic models can be found in [4].

4.2 Getting a ML tree

Likelihood-based phylogenetic reconstruction is implemented in the package phangorn. As
in the previous section, we use the data dna2, converted into phangorn’s format. We choose
a Neighbor-Joining tree of Tamura and Nei’s 1993 distance to get an initial tree.

class(dna2)
## [1] "phyDat"
dna?2

## 80 sequences with 1701 character and 269 different site patterns.
## The states are a c g t

tre.ini <- nj(dist.dna(dna,model="TN93"))

tre.ini

##

## Phylogenetic tree with 80 tips and 78 internal nodes.
HH#

## Tip labels:

## CY013200, CY013781, CY012128, CY013613, CY012160, CY012272,
#Hit

## Unrooted; includes branch lengths.

This tree is most likely not the ML tree, but we need it as a 'reasonable’ starting point
to initialize the optimization procedure. The likelihood of this initial tree is computed using

pml:
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fit.ini <- pml(tre.ini, dna2, k=4)

fit.ini

#it

## loglikelihood: -5642
##

## unconstrained loglikelihood: -4737
## Discrete gamma model

## Number of rate categories: 4

## Shape parameter: 1

#i#

## Rate matrix:
## acgt
## a 0111
## c 1011
## g 1101
## t 1110
#i#

## Base frequencies:
## 0.25 0.25 0.25 0.25

We now have all the information needed for seeking a maximum likelihood solution using
optim.pml; we specify that we want to optimize tree topology (optNni=TRUE), base
frequencies (optBf=TRUE), the rates of all possible subtitutions (optQ=TRUE), and use a
gamma distribution to model variation in the substitution rates across sites (optGamma=TRUE):

fit <- optim.pml(fit.ini, optNni=TRUE, optBf=TRUE,
optQ=TRUE, optGamma=TRUE)

fit

#i#t

## loglikelihood: -5325

#i#t

## unconstrained loglikelihood: -4737
## Discrete gamma model

## Number of rate categories: 4

## Shape parameter: 0.2677

#it
## Rate matrix:
#Ht a 8 g t

## a 0.0000 1.9742 6.6408 0.6469
## c 1.9742 0.0000 0.1716 8.2353
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## g 6.6408 0.1716 0.0000 1.0000
## t 0.6469 8.2353 1.0000 0.0000
##

## Base frequencies:

## 0.3373 0.1979 0.2239 0.2408

class(fit)
## [1] "pml"

names (fit)

## [1] lllogLikll Ilinvll Ilkll ”Shape” IIQIl Ilbfll llratell
## [8] ”SiteLik” "Weight” Ilgll IIWH Ileigll Ildatall llmodelll
## [15] IIINVII |l11'0|l I|treell lllvll "Call" I|df|l lleinl

# [22] "11Mix"

fit is a list with class pml storing various useful information about the model parameters
and the optimal tree (stored in fit$tree). In this example, we can see from the output that
transitions (a <> g and ¢ <> t) are much more frequent than transversions (other changes),
which is consistent with biological expectations (transversions induce more drastic changes of
chemical properties of the DNA and are more prone to purifying selection). One advantage
of using probabilistic models of evolution is that different models can be compared formally.
For instance, here, we can verify that the optimized tree is indeed better than the original
one using standard likelihood ratio tests and AIC:

anova(fit.ini, fit)

## Likelihood Ratio Test Table
## Log lik. Df Df change Diff log lik. Pr(>|Chil)

## 1 -5642 158

## 2 -5325 166 8 633 <2e-16 **x

## ——-

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

AIC(fit.ini)
## [1] 11600
AIC(fit)

## [1] 10983

Both the likelihood ratio test (highly significant, function anova) and the AIC
(lower=better) indicate that the new tree is a better model of the data than the initial one.
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We can extract and plot the tree as we did before with other methods:

tred <- root(fit$tree,l)

tre4d <- ladderize(tre4)

plot(tre4, show.tip=FALSE, edge.width=2)

title("Maximum-likelihood tree")

tiplabels(annot$year,
bg=transp(num2col (annot$year, col.pal=myPal),.7),
cex=.5, fg="transparent")

axisPhylo ()

temp <- pretty(1993:2008, 5)

legend ("topright", fill=transp(num2col(temp, col.pal=myPal),.7),

leg=temp, ncol=2)

Maximum-likelihood tree

@ 1990 @ 2005
0O 1995 W 2010
O 2000

0.08 0.06 0.04 0.02 0

This tree is statistically better than the original NJ tree based on Tamura and Nei’s
distance [8]. However, we can note that it is remarkably similar to the 'robust’ version of this
distance-based tree (after collapsing weakly supported nodes). The structure of this dataset
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is fairly simple, and all methods give fairly consistent results. In practice, different methods
can lead to different interpretations, and it is often worth exploring different approaches
before drawing conclusions on the data.
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