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Abstract

This practical aims to illustrate the basics of phylogenetic reconstruction using
@, with an emphasis on how the methods work, how their results can be inter-
preted, and the relative advantages and limitations of the methods. Three main
classes of phylogenetic approaches are introduced, namely distance-based, maximum
parsimony, and maximum likelihood methods. We also illustrate how to assess the
reliability of individual nodes using bootstrap. Methods are illustrated using a toy
dataset of seasonal influenza isolates sampled in the US from 1993 to 2008.
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1 Introduction

1.1 Phylogenetics in a nutshell

The reconstruction of evolutionary relationships of a set of organisms can be a tricky
task, and has led to the development of a variety of methods over the last decades,
implemented in an even larger number of software. However, these methods can be
classified into three main categories:

* distance-based methods: compute a matrix of pairwise genetic distances
between the studied taxa, and summarize it using a hierarchical clustering
algorithm such as UPGMA or Neighbour-Joining (Supplementary Figure S1).
Advantages: fast (the fastest) and flexible (different genetic distances allow to
account for different features of DNA sequence evolution). Limitations: no
model comparison (can’t test for the ’best’ tree, or the ’best’ model of evolu-
tion); may be inaccurate and highly dependent on the distance and clustering
algorithm chosen.

* maximum parsimony: seeks the tree with the smallest number of overall
genetic changes between the taxa. This is achieved by changing randomly the
topology of the tree until parsimony is no longer improved (Supplementary Fig-
ure S2). Advantages: intuitive interpretation (assumes that the simplest sce-
nario is the most likely), usually accurate when the amount of genetic changes
is small. Limitations: computer-intensive, simplistic model of evolution, no
model comparison, inaccurate when substantial evolution takes place.

* likelihood-based method: based on a model of sequence evolution which
allows to compute a likelihood, that is, the probability of observing the data
given the model and a set of parameters. There are two main branches of
likelihood-based method: maximum likelihood and Bayesian methods. The
first seeks the 'best’ tree and parameter values, i.e. the one maximizing the
likelihood. The second derives samples of tree topologies and model param-
eters which are the most consistent with the likelihood and possible prior
knowledge about the tree/parameters (Supplementary Figure S3). Advan-
tages: flexible (any model of evolution can be used), usually accurate, model
selection possible, measure of uncertainty (in Bayesian approaches). Limita-
tions: computer-intensive, model selection possibly cumbersome.

The @ software implements one of the largest selection of phylogenetic methods,
including all of the above except for Bayesian reconstruction.

1.2 Required packages

This practical requires a working version of @ [6] greater than or equal to 2.15.2. It
uses the following packages: stats implements basic hierarchical clustering routines,
ade/ [1] and adegenet [2] are here used essentially for their graphics, ape [5] is
the core package for phylogenetics, and phangorn [7] implements parsimony and
likelihood-based methods. Make sure that the dependencies are installed as well
when installing the packages:

> install.packages("adegenet", dep=TRUE)

> install.packages("phangorn", dep=TRUE)

Then load the packages using:

> library(stats)
> library(ade4)
> library(ape)
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> library(adegenet)
> library(phangorn)

1.3 The data

The data used in this practical are DNA sequences of seasonal influenza (H3N2)
downloaded from Genbank (http://www.ncbi.nlm.nih.gov/genbank/). Align-
ments have been realized beforehand using standard tools (Clustalw2 for basic align-
ment and Jalview for refining the results). We selected 80 isolates genotyped for the
hemagglutinin (HA) segment sampled in the US from 1993 to 2008. The dataset
consists of two files: i) usflu.fasta, a file containing aligned DNA sequences and
ii) usflu.annot.csv, a comma-separated file containing useful annotations of the
sequences. Both files are available online from the adegenet website:
- DNA sequences: http://adegenet.r-forge.r-project.org/files/usflu.fasta
- annotations: http://adegenet.r-forge.r-project.org/files/usflu.annot.
csv

To read the DNA sequences into R, we use fasta2DNAbin from the adegenet
package:
> dna <- fasta2DNAbin(file="http://adegenet.r-forge.r-project.org/files/usflu.fasta")

Converting FASTA alignment into a DNAbin object...
Finding the size of a single genome...

genome size is: 1,701 nucleotides
( 30 1lines per genome )
Importing sequences...

Forming final object...

...done.
> dna

80 DNA sequences in binary format stored in a matrix.

All sequences of same length: 1701

Labels: CY013200 CY013781 CY012128 CY013613 CY012160 CY012272 ...
Base composition:

a c g t
0.335 0.200 0.225 0.239

> class(dna)

[1] "DNAbin"

Sequences are stored as DNAbin objects, an efficient representation of DNA/RNA
sequences which use bytes (as opposed to character strings) to code nucleotides. For
instance, the first 10 nucleotides of the first 5 isolates:

> as.character(dna)[1:5,1:10]

[,11 [,2) [,3] [,4] [,8] [,e] [,7] [,8] [,9] [,10]

CY013200 "a "t g a a "g g wenT owgnT wgn
CY013781 "a” "-t" ||g'| ||a" "a” "g" ||a" "C" "t" "a"
CY012128 lla" "tll ||gl| ||a" "a" "gll ||al| "C" "t" ||a||
CY013613 "al’ "t" "g" ||a" ||a|’ "g" |’a|| "C" ||t|’ "a"
CY01216O "a" "-t" ||g" ||a" "a" "g" ||a" "C" "t" "a"



http://www.ncbi.nlm.nih.gov/genbank/
http://adegenet.r-forge.r-project.org/files/usflu.fasta
http://adegenet.r-forge.r-project.org/files/usflu.annot.csv
http://adegenet.r-forge.r-project.org/files/usflu.annot.csv
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are actually coded as raw bytes:
> unclass(dna) [1:5,1:10]

(,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
CY013200 88 18 48 88 88 48 83 28 18 88
CYo13781 88 18 48 83 83 48 88 28 18 88
Cyo12128 88 18 48 88 83 48 88 28 18 88
CY013613 88 18 48 88 83 48 88 28 18 88
CYo12160 88 18 48 88 83 48 88 28 18 88

> typeof (unclass(dna) [1:5,1:10])

[1] "I'aW"

This results in significant savings in terms of memory required to represent the data:

> object.size(as.character(dna))/object.size(dna)
7.71879054549557 bytes

While this dataset is very small, such compression can become essential for larger
genomes (bacterial genomes can be several millions of nucleotides long). Note that
for even larger datasets, more efficient data reduction can be achieved using the
bit-level coding of polymorphic sites implemented in adegenet [3].

The annotation file is read in R using the standard procedure:

> annot <- read.csv("http://adegenet.r-forge.r-project.org/files/usflu.annot.csv",
+ header=TRUE, row.names=1)
> head(annot)

accession year misc
CY013200 1993 (A/New York/783/1993(H3N2))
CY013781 1993 (A/New York/802/1993(H3N2))
CY012128 1993 (A/New York/758/1993(H3N2))
CY013613 1993 (A/New York/766/1993(H3N2))
CY012160 1993 (A/New York/762/1993(H3N2))
CY012272 1994 (A/New York/729/1994(H3N2))

U WN -

accession contains the Genbank accession numbers, which are unique sequence
identifiers; year is the year of collection of the isolates; misc contains other possibly
useful information. Before going further, we check that isolates are identical in both
files (accession numbers are used as labels for the sequences):

> dim(dna)

(11 80 1701

> dim(annot)

[1] 80 3

> all(annot$accession==rownames (dna))
[1] FALSE

> table(annot$year)

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Good! The data we will analyse are 80 isolates (5 per year) typed for the same 1701
nucleotides.
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2 Distance-based phylogenies

Distance-based phylogenetic reconstruction consists in i) computing pairwise genetic
distances between individuals (here, isolates), ii) representing these distances using
a tree (Figure S1), and iii) evaluating the relevance of this representation.

2.1 Computing genetic distances

We first compute genetic distances using ape’s dist.dna, which proposes no less
than 15 different genetic distances (see 7dist.dna for details). Here, we use Tamura
and Nei 1993’s model [8] which allows for different rates of transitions and transver-
sions, heterogeneous base frequencies, and between-site variation of the substitution
rate.

> D <- dist.dna(dna, model="TN93")
> class(D)

[1] "dist"
> length(D)

[1] 3160

D is an object of class dist which contains the distances between every pairs of
sequences.

Now that genetic distances between isolates have been computed, we need to
visualize this information. There are n(n — 1)/2 distances for n sequences; here,
n = 80 so that the genetic relationships between the sampled isolates are described
by 80 x 79/2 = 3160 pairwise distances. Most of the time, summarising such infor-
mation is not entirely trivial. The simplest approach is plotting directly the matrix
of pairwise distances:

> temp <- as.data.frame(as.matrix(D))
> table.paint(temp, cleg=0, clabel.row=.5, clabel.col=.5)
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Darker shades of grey represent greater distances. Note that to use image to produce

> temp <- t(as.matrix(D))
> temp <- temp[,ncol(temp)

> par(mar
> image (x
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(see image.plot in the package fields for similar plots with a legend).

Since the data are roughly ordered by year, we can already see some genetic
structure appearing, but this is admittedly not the most satisfying or informative
approach, and tells us little about the evolutionary relationships between our iso-
lates.

2.2 Building trees

We use trees to get a better representation of the genetic distances between indi-
viduals. It is important, however, to bear in mind that the obtained trees are not
necessarily efficient representations of the original distances, and information can
—and likely will— be lost in the process.

A wide array of algorithms for constructing trees from a distance matrix are
available in @, including:

* nj (ape package): the classical Neighbor-Joining algorithm.

* bionj (ape): an improved version of Neighbor-Joining.

*x fastme.bal and fastme.ols (ape): minimum evolution algorithms.

* hclust (stats): classical hierarchical clustering algorithms including single
linkage, complete linkage, UPGMA, and others.

Here, we go for the standard:
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> tre <- nj(D)
> class(tre)

[1] "phle"

> tre <- ladderize(tre)
> tre

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, CY012128, CY013613, CY012160, CY012272,

Unrooted; includes branch lengths.

> plot(tre, cex=.6)
> title("A simple NJ tree")

A simple NJ tree

r% 9010748

e
ﬁgﬁ@aﬁgﬁ

R
CYER22y 03411

= .

Trees created in the package ape are instances of the class phylo. See ?read.tree
for a description of this class.

2.3 Plotting trees

The plotting method offers many possibilities for plotting trees; see ?plot.phylo
for more details. Functions such as tiplabels, nodelabels, edgelabels and ax-—
isPhylo can also be useful to annotate trees. For instance, we may simply represent
years using different colors (red=ancient; blue=recent):
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plot(tre, show.tip=FALSE)

title("Unrooted NJ tree")

myPal <- colorRampPalette(c("red","yellow","green","blue"))
tiplabels(annot$year, bg=num2col (annot$year, col.pal=myPal), cex=.5)

temp <- pretty(1993:2008, 5)

legend("bottomleft", fill=num2col(temp, col.pal=myPal), leg=temp, ncol=2)

V V V VYVYV

Unrooted NJ tree

B 1990 B 2005
O 1995 W 2010
O 2000

This illustrates a common mistake when interpreting phylogenetic trees. In the
above figures, we tend to assume that the left-side of the phylogeny is ‘ancestral’,
while the right-side is ‘recent’. This is wrong —as suggested by the colors— unless
the phylogeny is actually rooted, i.e. some external taxa has been used to define
what is the most ‘ancient’ split in the tree. The present tree is not rooted, and
should be better represented as such:

> plot(tre, type="unrooted", show.tip=FALSE)
> title("Unrooted NJ tree")
> tiplabels(tre$tip.label, bg=num2col(annot$year, col.pal=myPal), cex=.5)

10
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Unrooted NJ tree

In the present case, a sensible rooting would be any of the most ancient isolates
(from 1993). We can take the first one:

> head(annot)

accession year misc
CY013200 1993 (A/New York/783/1993(H3N2))
CY013781 1993 (A/New York/802/1993(H3N2))
CY012128 1993 (A/New York/758/1993(H3N2))
CY013613 1993 (A/New York/766/1993(H3N2))
CY012160 1993 (A/New York/762/1993(H3N2))
CY012272 1994 (A/New York/729/1994(H3N2))

OO WN -

tre2 <- root(tre, out=1)
tre2 <- ladderize(tre2)

VvV Vv

and plot the result:

plot(tre2, show.tip=FALSE, edge.width=2)

title("Rooted NJ tree")

tiplabels(tre$tip.label, bg=transp(num2col(annot$year, col.pal=myPal),.7), cex=.5,
fg="transparent")

axisPhylo()

temp <- pretty(1993:2008, 5)

legend("topright", fill=transp(num2col(temp, col.pal=myPal),.7), leg=temp, ncol=2)

VVYV+VyVYyV

11
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Rooted NJ tree

@ 1990 @ 2005
O 1995 B 2010
0O 2000

0.06 0.04 0.02 0

The phylogeny is now rooted. This tree is typical of influenza. Are there signs of a
molecular clock? What can you say about the evolution of influenza and the fitness
of different viral lineages, based on this tree? What does the “trunk” of this tree
represent? Would there be any interest in predicting the genome of the trunk?

2.4 Assessing the quality of a phylogeny

Many genetic distances and hierarchical clustering algorithms can be used to build
trees; not all of them are appropriate for a given dataset. Genetic distances rely on
hypotheses about the evolution of DNA sequences which should be taken into ac-
count. For instance, the mere proportion of differing nucleotides between sequences
(model=’raw’ in dist.dna) is easy to interprete, but only makes sense if all sub-
stitutions are equally frequent. In practice, simple yet flexible models such as that
of Tamura and Nei (1993, [8]) are probably fair choices. At the very least, the ge-
netic distance used should allow different rates for transitions (a <+ g, ¢ <> t) and
transversions (other changes).

Once one has chosen an appropriate genetic distance and built a tree using
this distance, an essential yet most often overlooked question is whether this tree
actually is a good representation of the original distance matrix. This is easily
investigated using simple biplots and correlation indices. The function cophenetic
is used to compute distances between the tips of the tree. Note that more distances
are available in the adephylo package (see distTips function).

> x <- as.vector(D)
> y <- as.vector(as.dist(cophenetic(tre2)))

12
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> plot(x, y, xlab="original pairwise distances", ylab="pairwise distances on the tree",

+ main="Is NJ appropriate?", pch=20, col=transp("black",.1), cex=3)
> abline(lm(y~x), col="red")
> cor(x,y) 2

[1] 0.9975154

Is NJ appropriate?

pairwise distances on the tree
0.04 0.06 0.08
| | |

0.02
|

0.00
|

I I I I I
0.00 0.02 0.04 0.06 0.08

original pairwise distances

As it turns out, our Neighbor-Joining tree (tre2) is a very good representation of
the chosen genetic distances. Things would have been different had we chosen, for
instance, UPGMA:

tre3 <- as.phylo(hclust(D,method="average"))

y <- as.vector(as.dist(cophenetic(tre3)))

plot(x, y, xlab="original pairwise distances", ylab="pairwise distances on the tree",
main="Is UPGMA appropriate?", pch=20, col=transp("black",.1l), cex=3)

abline(lm(y~x), col="red")

cor(x,y) "2

VV +VVyVv

[1] 0.7393009

13
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Is UPGMA appropriate?

0.02 0.03 0.04 0.05

pairwise distances on the tree

0.01

0.00

I I I I I
0.00 0.02 0.04 0.06 0.08

original pairwise distances

In this case, UPGMA is a poor choice. Why is this? A first explanation is that
UPGMA forces ultrametry (all the tips are equidistant to the root):

> plot(tre3, cex=.5)
> title("UPGMA tree")

14
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UPGMA tree
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The underlying assumption is that all lineages have undergone the same amount
of evolution, which is obviously not the case in seasonal influenza sampled over 16
years.

Another validation of phylogenetic trees, much more commonly used, is boot-
strap. Bootstrapping a phylogeny consists in sampling the nucleotides with replace-
ment, rebuilding the phylogeny, and checking if the original nodes are present in
the bootstrapped trees (Supplementary Figure S4). In practice, this procedure is
repeated a large number of times (e.g. 100, 1000), depending on how computer-
intensive the phylogenetic reconstruction is. The underlying idea is to assess the
variability in the obtained topology which results from conducting the analyses on a
random sample the genome. Note that the assumption that the analysed sequences
represent a random sample of the genome is often dubious. For instance, this is
not the case in our toy dataset, since HA segment has a different rate of evolution
and experiences different selective pressures from other segments of the influenza
genome. We nonetheless illustrate the procedure, implemented by boot.phylo:

> myBoots <- boot.phylo(tre2, dna, function(e) root(nj(dist.dna(e, model = "TN93")),1))
> myBoots

The output gives the number of times each node was identified in bootstrapped

analyses (the order is the same as in the original object). It is easily represented

using nodelabels:

> plot(tre2, show.tip=FALSE, edge.width=2)

> title("NJ tree + bootstrap values")

> tiplabels(frame="none", pch=20, col=transp(num2col(annot$year, col.pal=myPal),.7),
+ cex=3, fg="transparent")

15
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> axisPhylo()
> temp <- pretty(1993:2008, 5)
> legend("topright", fill=transp(num2col(temp, col.pal=myPal),.7), leg=temp, ncol=2)
> nodelabels(myBoots, cex=.6)

NJ tree + bootstrap values

@ 1990 @ 2005
0O 1995 B 2010
O 2000

0.06 0.04 0.02 0

As we can see, some nodes are very poorly supported. One common practice is to
collapse these nodes into multifurcations. There is no dedicated method for this
in ape, but one simple workaround consists in setting the corresponding edges to a
length of zero (here, with bootstrap < 70%), and then collapsing the small branches:

temp <- tre2

N <- length(tre2$tip.label)

toCollapse <- match(which(myBoots<70)+N, temp$edgel,2])
temp$edge.length[toCollapse] <- 0

tre3 <- di2multi(temp, tol=0.00001)

\2

vV V V V

The new tree might be slightly less informative, but more robust than the pre-
vious one:

plot(tre3, show.tip=FALSE, edge.width=2)

title("NJ tree after collapsing weak nodes")

tiplabels(tre3$tip.label, bg=transp(num2col(annot$year, col.pal=myPal),.7), cex=.5,
fg="transparent")

axisPhylo ()

temp <- pretty(1993:2008, 5)

legend ("topright", fill=transp(num2col(temp, col.pal=myPal),.7), leg=temp, ncol=2)

VVV +VVYyV

16
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NJ tree after collapsing weak nodes

@ 1990 @ 2005
O 1995 B 2010
0O 2000

0.06 0.04 0.02 0

17
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3 Maximum parsimony phylogenies

3.1 Introduction

Phylogenetic reconstruction based on parsimony seeks trees which minimize the
total number of changes (substitutions) from ancestors to descendents. While a
number of criticisms can be made to this approach, it is a simple way to infer phy-
logenies for data which display low divergence (i.e. most taxa differ from each other
by only a few nucleotides, and the overall substitution rate is low).

In practice, there is often no way to perform an exhaustive search amongst all
possible trees to find the most parsimonious one, and heuristic algorithms are used
to browse the space of possible trees (Figure S2). The strategy is fairly simple: i)
initialize the algorithm using a tree and ii) make small changes to the tree and retain
those leading to better parsimony, until the parsimony score stops improving.

3.2 Implementation

Parsimony-based phylogenetic reconstruction is implemented in the package phang-
orn. It requires a tree (in ape’s format, i.e. a phylo object) and the original DNA
sequences in phangorn’s own format, phyDat. We convert the data and generate a
tree to initialize the method:

> dna2 <- as.phyDat (dna)
> class(dna2)

[1] "phyDat"
> dna2

80 sequences with 1701 character and 269 different site patterns.
The states are ac g t

> tre.ini <- nj(dist.dna(dna,model="raw"))
> tre.ini

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, CY012128, CY013613, CY012160, CY012272,

Unrooted; includes branch lengths.

The parsimony of a given tree is given by:

> parsimony(tre.ini, dna2)

[1] 422

Then, optimization of the parsimony is achieved by:

> tre.pars <- optim.parsimony(tre.ini, dna2)

Final p-score 420 after 2 nni operations
> tre.pars

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, (CY012128, CY013613, CY012160, CY012272,

Unrooted; no branch lengths.

18
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Here, the final result is very close to the original tree. The obtained tree is
unrooted and does not have branch lengths, but it can be plotted as previously:

plot(tre.pars, type="unr", show.tip=FALSE, edge.width=2)
title("Maximum-parsimony tree")
tiplabels(tre.pars$tip.label, bg=transp(num2col(annot$year, col.pal=myPal),.7), cex=.5,
fg="transparent")
temp <- pretty(1993:2008, 5)
legend ("bottomright", fill=transp(num2col(temp, col.pal=myPal),.7), leg=temp, ncol=2,
bg=transp("white"))

+ VV+VVYV

Maximum-—parsimony tree

B 1990 @ 2005
O 1995 W 2010
O 2000

In this case, parsimony gives fairly consistent results with other approaches,
which is only to be expected whenever the amount of divergence between the se-
quences is fairly low, as is the case in our data.

19
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4 Maximum likelihood phylogenies

4.1 Introduction

Maximum likelihood phylogenetic reconstruction is somehow similar to parsimony
methods in that it browses a space of possible tree topologies looking for the ’best’
tree. However, it offers far more flexibility in that any model of sequence evolution
can be taken into account. Given one model of evolution, one can compute the
likelihood of a given tree, and therefore optimization procedures can be used to
infer both the most likely tree topology and model parameters.

As in distance-based methods, model-based phylogenetic reconstruction requires
thinking about which parameters should be included in a model. Usually, all pos-
sible substitutions are allowed to have different rates, and the substitution rate is
allowed to vary across sites according to a gamma distribution. We refer to this
model as GTR +I'(4) (GTR: global time reversible). More information about phy-
logenetic models can be found in [4].

4.2 Sorting out the data

Likelihood-based phylogenetic reconstruction is implemented in the package phang-
orn. Like parsimony-based approaches, it requires a tree (in ape’s format, i.e. a
phylo object) and the original DNA sequences in phangorn’s own format, phyDat.
As in the previous section, we convert the data and generate a tree to initialize the
method:

> dna2 <- as.phyDat(dna)

> class(dna2)

[1] "phyDat"

> dna2

80 sequences with 1701 character and 269 different site patterns.
The states are a c g t

> tre.ini <- nj(dist.dna(dna,model="TN93"))
> tre.ini

Phylogenetic tree with 80 tips and 78 internal nodes.

Tip labels:
CY013200, CY013781, (CY012128, CY013613, CY012160, CY012272,

Unrooted; includes branch lengths.
To initialize the optimization procedure, we need an initial fit for the model

chosen. This is computed using pm1:

> pml(tre.ini, dna2, k=4)

loglikelihood: NaN
unconstrained loglikelihood: -4736.539
Discrete gamma model
Number of rate categories: 4

Shape parameter: 1

Rate matrix:

acgt
a0111
cl1011
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gl1101

t1110

Base frequencies:
0.25 0.25 0.25 0.25

The computed likelihood is NA, which is obviously a bit of a problem, but a likely
frequent issue. This issue is due to missing data (NAs) and ambiguous sites in the
original dataset:

> table(as.character(dna2))

- a c g k m r s t w
147 45595 27170 30613 1 2 1 1 32549 1

We therefore need to remove missing data before going further.

We first retrieve the position of missing data, i.e. any data differing from ’a’,
7g7’7c7 and 7t7.
> na.posi <- which(apply(as.character(dna),2, function(e) any('e %in’% c("a","t","g","c"))))
We can easily plot the number of missing data for each site:

> temp <- apply(as.character(dna),2, function(e) sum('e %in% c("a","t","g","c")))
> plot(temp, type="1", col="blue", xlab="Position in HA segment", ylab="Number of NAs")

2.0

15

Number of NAs
1.0

0.5

I I I I
0 500 1000 1500

Position in HA segment

The begining of the alignment is guilty for most of the missing data, which was
only to be expected (extremities of the sequences have variable length).

> dna3 <- dnal,-na.posi]
> dna3
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80 DNA sequences in binary format stored in a matrix.

A1l sequences of same length: 1596

Labels: CY013200 CY013781 (CY012128 CY013613 CY012160 CY012272 ...
Base composition:

a c g t
0.340 0.197 0.226 0.238

> table(as.character(dna3))

a c g t
43402 25104 28828 30346
> dna4 <- as.phyDat(dna3)

The object dna3 is an alignment of all sequences excluding missing data; dna4 is its
conversion in phyDat format.

4.3 Getting a ML tree

We recompute the likelihood of the initial tree using pml:

> dna4 <- as.phyDat(dna3)

> tre.ini <- nj(dist.dna(dna3,model="TN93"))
> fit.ini <- pml(tre.ini, dna4, k=4)

> fit.ini

loglikelihood: -5183.648
unconstrained loglikelihood: -4043.367
Discrete gamma model
Number of rate categories: 4
Shape parameter: 1

Rate matrix:

acgt
a0111
cl1011
gl1101
t1110

Base frequencies:
0.25 0.25 0.25 0.25

We now have all the information needed for seeking a maximum likelihood solution
using optim.pml; we specify that we want to optimize tree topology (optNni=TRUE),
base frequencies (optBf=TRUE), the rates of all possible subtitutions (optQ=TRUE),
and use a gamma distribution to model variation in the substitution rates across
sites (optGamma=TRUE):

> fit <- optim.pml(fit.ini, optNni=TRUE, optBf=TRUE, optQ=TRUE, optGamma=TRUE)

> fit
loglikelihood: -4915.866

unconstrained loglikelihood: -4043.367
Discrete gamma model

Number of rate categories: 4

Shape parameter: 0.2843531

Rate matrix:

a C g t
a 0.0000000 2.3831856 8.2953677 0.8555066
c 2.3831856 0.0000000 0.1486213 10.0764255
g 8.2953677 0.1486213 0.0000000 1.0000000
t 0.8555066 10.0764255 1.0000000 0.0000000

Base frequencies:
0.3416519 0.1953526 0.2242948 0.2387007
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> class(fit)
[1] ||pm1||

> names (fit)

[1] lllogLikll n invll llkll llshapell IIQII llbf n llratell

[8] llsiteLikll "Weight" Ilgll "W" Ileigll lldatall Ilmodelll
[15] IIINVII "11.0" Iltreell lll-VlI Ilcallll lldf n IIWMiXII
[22] "11Mix"

fit is a list with class pml storing various useful information about the model
parameters and the optimal tree (stored in fit$tree). In this example, we can
see from the output that transitions (a <+ ¢g and ¢ <> t) are much more frequent
than transversions (other changes), which is consistent with biological expectations
(transversions induce more drastic changes of chemical properties of the DNA and
are more prone to purifying selection). One advantage of using probabilistic models
of evolution is that different models can be compared formally. For instance, here,
we can verify that the optimized tree is indeed better than the original one using
standard likelihood ratio tests and AIC:

> anova(fit.ini, fit)

Likelihood Ratio Test Table
Log 1lik. Df Df change Diff log lik. Pr(>|Chil)
1 -5183.6 158
2 -4915.9 166 8 535.56 < 2.2e-16 *x*x

é;énif. codes: 0 ‘“**x’ 0.001 “**’> 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1
> AIC(fit.ini)

[1] 10683.3

> AIC(fit)

[1] 10163.73

Both the ANOVA test (highly significant) and the AIC (lower=Dbetter) indicate that
the new tree is a better model of the data than the initial one.

We can extract and plot the tree as we did before with other methods:

tred <- root(fit$tree,1)

tre4 <- ladderize(tre4)

plot(tre4, show.tip=FALSE, edge.width=2)

title("Maximum-likelihood tree")

tiplabels(annot$year, bg=transp(num2col(annot$year, col.pal=myPal),.7), cex=.5,
fg="transparent")

axisPhylo()

temp <- pretty(1993:2008, 5)

legend ("topright", fill=transp(num2col(temp, col.pal=myPal),.7), leg=temp, ncol=2)

VVV+VYVVVYV
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Maximum-likelihood tree

@ 1990 @ 2005
O 1995 B 2010
0O 2000

0.08 0.06 0.04 0.02 0

This tree is statistically better than the original NJ tree based on Tamura and
Nei’s distance [8]. However, we can note that it is remarkably similar to the robust’
version of this distance-based tree (after collapsing weakly supported nodes). The
structure of this dataset is fairly simple, and all methods give fairly consistent
results. In practice, different methods can lead to different interpretations, and it is
often worth exploring different approaches before drawing conclusions on the data.
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5 Supplementary figures
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Figure S1: distance-based phylogenetic reconstruction. Pairwise genetic distances between the
sampled pathogens (represented as star-like bugs) are computed from aligned DNA sequences. The
resulting distance matrix is summarized using a hierarchical clustering algorithm such as UPGMA or NJ,
which aggregate taxa until a complete tree is reconstructed.
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Figure S2: maximum-parsimony phylogenetic reconstruction. The method researches the tree
with the smallest total number of genetic changes (thick bars). This is achieved by permuting nodes
randomly (dotted arrows) and retaining configurations with improved parsimony; the algorithm stops
when the parsimony score can no longer be improved.
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Likelihood / Posterior\

Figure S3: likelihood-based phylogenetic reconstruction. Maximum-likelihood (ML) and
Bayesian approaches use heuristic methods to find trees and parameters which are consistent with the
data (blue background), while overlooking less plausible topologies (grey background). In ML meth-
ods, the tree and parameters maximizing the likelihood function are retained, while Bayesian approaches
provide samples of trees and parameters consistent with the posterior distribution.
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Figure S4: bootstrapping phylogenies. Bootstrapping a phylogeny consists in comparing a reference
tree to a set of trees obtained by re-sampling the data. Each re-sampled dataset yields a phylogeny which
can be compared to the reference. If the original dataset is a random sample of the genome, then the
variability observed across bootstrapped trees reflects the variability of the genome.
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