
Practical course using the software

—————
Multivariate analysis of genetic data: exploring

group diversity

Thibaut Jombart

—————

Abstract

This practical course tackles the question of group diversity in genetic
data analysis using [8]. It consists of two main parts: first, how to infer
groups when these are unknown, and second, how to use group information
when describing the genetic diversity. The practical uses mostly the packages
adegenet [5], ape [7] and ade4 [1, 3, 2], but others like genetics [9] and
hierfstat [4] are also required.
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1 Defining genetic clusters

Group information is not always known when analysing genetic data. Even
when some prior clustering can be defined, it is not always obvious that
these are the best genetic clusters that can be defined. In this section, we
illustrate two simple approaches for defining genetic clusters.

1.1 Hierarchical clustering

Hierarchical clustering can be used to represent genetic distances as trees,
and indirectly to define genetic clusters. This is achieved by cutting the tree
at a certain distance, and pooling the tips descending from the few retained
branches into the same clusters (cutree). Load the data microbov, replace
the missing data, and compute the Euclidean distances between individuals
(functions na.replace and dist). Then, use hclust to obtain a hierarchical
clustering of the individual which forms strong groups (choose the right
method(s)).
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Cluster Dendrogram

secret clustering method
D

H
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t

Cut the tree into two groups. Do these groups match any prior clustering
of the data (see content of microbov$other)? Remember that table can be
used to build contingency tables. Accordingly, what is the main component
of the genetic variability in these cattle breeds?

Repeat this analysis by cutting the tree into as many clusters as there are
breeds in the dataset (this can be extracted by pop). Build a contingency ta-
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ble to see the match between inferred groups and breeds. Use table.value

to represent the result, then interprete it:
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Can some groups be identified to species? to breeds? Are some species
more admixed than others?

1.2 K-means

K-means is another, non-hierarchical approach for defining genetic clusters.
It relies on the usual ANOVA model for multivariate data X ∈ Rn×p:

VAR(X) = B(X) + W(X)

where VAR, B and W correspond to, respectively, the total variance, the
variance between groups, and the variance within groups. K-means then
consists in finding groups that will minimize W(X). Using the function
kmeans, find 15 genetic clusters in the microbov data; how do the inferred
clusters compare to the breeds? Reproduce the same figure as before for
these results; the figure should ressemble:
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What differences can you see? What are the species which are easily genet-
ically identified using K-means?

Look at the output of K-means clustering, and try to identify the sums
of squares corresponding to the variance partition model. How do these
behave when increasing the number of clusters? Using sapply, retrieve the
results of several K-means where K is increased gradually. Plot the results;
one example of obtained result would be:
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How can you interprete this observation? Can B(X) or W(X) be used
for selecting the best K?

Deciding of the number of optimal clusters (K) to be retained is often
tricky. This can be achieved by computing K-means solution for a range of
K, and then selecting the K giving the best Bayesian Information Criterion
(BIC). This is achieved by the function find.clusters. In addition, this
function orthogonalizes and reduces the data using PCA as a prior step to
K-means. Use this function to search for the optimal number of clusters
in microbov. How many clusters would you retain? Compare them to the
breed information: when 8 clusters are retained, what are the most admixed
breeds?

Repeat the same analyses for the nancycats data. What can you say
about the likely profile of admixture between these cat colonies?

2 Describing genetic clusters

There are different ways of using genetic cluster information in the multi-
variate analysis of genetic data. The methods vary according to the purpose
of the study: describing the differences between groups, describing how in-
dividuals are structured in the different clusters, etc.
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2.1 Analysis of group data

Sometimes we are just interested in the diversity between groups, and not
interested by variations occuring within clusters. In such cases, we can anal-
yse data directly at a population level. The first step doing so is computing
allele counts by populations (using genind2genpop). These data can then
be:

? directly analysed using Correspondance Analysis (CA, dudi.coa), which
is appropriate for contingency tables

? translated into scaled allele frequencies (makefreq or scaleGen), and
analysed by PCA (PCA, dudi.pca)

? used to compute genetic distances between populations (dist.genpop)
which are in turn summarised by Principal Coordinates Analysis (PCoA,
dudi.pco)

Try applying these approaches to the dataset microbov, and compare
the obtained results.

 d = 0.5 

 Borgou 

 Zebu 

 Lagunaire 

 NDama  Somba 

 Aubrac 

 Bazadais 
 BlondeAquitaine 

 BretPieNoire  Charolais  Gascon  Limousin  MaineAnjou  Montbeliard 

 Salers 

 Eigenvalues 

microbov − Correspondance Analysis
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 d = 0.5 

 Borgou 

 Zebu 

 Lagunaire 

 NDama 

 Somba 

 Aubrac 

 Bazadais 

 BlondeAquitaine 
 BretPieNoire  Charolais 

 Gascon 
 Limousin 

 MaineAnjou  Montbeliard 

 Salers 

 Eigenvalues 

microbov − Principal Component Analysis

 d = 0.1 

 Borgou 

 Zebu 

 Lagunaire 

 NDama 
 Somba 

 Aubrac 

 Bazadais 

 BlondeAquitaine 

 BretPieNoire 
 Charolais 

 Gascon 
 Limousin 

 MaineAnjou  Montbeliard 

 Salers 

 Eigenvalues 

microbov − Principal Coordinates Analysis
Edwards distance

For the PCoA, try different Euclidean distances (see dist.genpop), and
compare the results. Does the genetic distance employed seem to matter?

We will leave the cattle at a rest for now, and switch to Human sea-
sonal influenza, H3N2. The dataset H3N2 contains SNPs derived from 1903
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hemagglutinin RNA sequences. Obtain allele counts per year of sampling
(see content of H3N2$other) using genind2genpop, and compute i) Ed-
ward’s distance ii) Reynolds’ distance and iii) Roger’s distance between
years. Perform the PCoA of these distances and plot the results; here is a
result for one of the requested distances:

 d = 0.1 

 2001 

 2002  2003 

 2004 

 2005 

 2006 

 Eigenvalues 

H3N2 − PCoA − secret distance

What is the meaning of the first principal components? Are the results
coherent between the three distances? To have yet another point of view,
perform the PCA of the individual data, and represent group information
when plotting the principal components using s.class.
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What can we say about the genetic evolution of influenza between years
2001-2006? Can we safely discard information about individual isolates,
and just work with data pooled by year of epidemic?

2.2 Between-class analyses

In many situations, discarding information about the individual observa-
tions leads to a considerable loss of information. However, basic analyses
working at an individual level –mainly PCA– are not optimal in terms of
group separation. This is due to the fact that PCA focuses on the total
variability, while only variability between groups should be optimized.

Let us remember the basic multivariate ANOVA model (P being the pro-
jector onto dummy vectors of group membership H: P = H(HTDH)−1HTD):

X = PX + (I−P)X

which leads to the variance partition seen before with the K-means:

VAR(X) = B(X) + W(X)

with:

? VAR(X) = trace(XTDX)

? B(X) = trace(XTPTDPX)
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? W(X) = trace(XT (I−P)TD(I−P)X)

where D is a metric (in PCA, it can be replaced by 1/n) and I is the identity
matrix.

We can verify that ordinary PCA decomposes the total variance:

> X <- scaleGen(H3N2, miss = "mean", scale = FALSE)
> pca1 <- dudi.pca(X, scale = FALSE, scannf = FALSE, nf = 2)
> sum(pca1$eig)

[1] 15.05856

> D <- diag(1/nrow(X), nrow(X))
> sum(diag(t(X) %*% D %*% X))

[1] 15.05856

Interestingly, it is possible to modify a multivariate analysis so as to
decompose B(X) or W(X) instead of VAR(X). Corresponding methods are
respectively called between-class (or inter-class) and within-class (or intra-
class) analyses. If the basic method is a PCA, then we will be performing
between-class PCA and within-class PCA. These methods are implemented
by the functions between and within. Here is an example of how to perform
the between-class PCA:

> f <- H3N2$other$epid
> bpca1 <- between(pca1, fac = factor(f), scannf = FALSE, nf = 3)

Verify that the sum of eigenvalues of this analysis equates the variance
between groups (B(X)); for this, you will need to compute H, and then P.
This requires a few matrix operations:

? A %*% B: multiplies matrix A by matrix B

? diag: either creates a diagonal matrix, or extract the diagonal of an
existing square matrix

? t: transposes a matrix

? ginv: inverses a symmetric matrix

To obtain H, the matrix of dummy vectors of group memberships, do:

> H <- as.matrix(acm.disjonctif(data.frame(f)))

You should find that B(X) is exactly equal to the sum of the eigenvalues
of the between-class analysis.

Repeat the same approach for the within-class analysis, and confirm that
the variance within groups is fully decomposed by the within-class PCA.

Now that you have checked that we can associate multivariate methods to
each component of the variance partitioning into groups, investigate further
the results of the between-class PCA.
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> par(bg = "grey")
> s.class(bpca1$ls, factor(f), col = rainbow(6))
> add.scatter.eig(bpca1$eig, 2, 1, 2)
> title("H3N2 - Between-class PCA")
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H3N2 − Between−class PCA

On this scatterplot, the centres of the groups (labels of year) are as scattered
as possible. Why is it slightly disappointing? How does it compare to the
original PCA? The following figure represents the PCA axes onto the basis
of the between-class analysis.

> s.corcircle(bpca1$as)
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 Axis1 

 Axis2 

What can we say about the PCA and between-class PCA? One obvious
problem of the previous scatterplot is the dispersion of the isolates within
2001 and 2002. To assess best the separation of the isolates by year, we need
to maximize dispersion between groups, and to minimize dispersion within
groups. This is precisely what Discriminant Analysis does.

2.3 Discriminant Analysis of Principal Components

Discriminant Analysis aims at displaying the best discrimination of individ-
uals into pre-defined groups. However, some technical requirements make it
often impractical for genetic data. Discriminant Analysis of Principal Com-
ponents (DAPC, [6]) has been developped to circumvent this issue. Apply
DAPC (function dapc) to the H3N2 data, retaining 50 PCs in the prelim-
inary PCA step, and plot the results using scatter. The result should
ressemble this:
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How does this compare to the previous results? What new feature appeared,
that was not visible before? To have a better assessment of the structure on
each axis, you can plot one dimension at a time, specifying the same axis
for xax and yax in scatter.dapc; for instance:
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To interprete results further, you will need the loadings of alleles, which
are not provided by default in dapc. Re-run the analysis if needed, and
specify you want allele contributions to be returned. Use loadingplot to
display allele contributions to the first and to the second structure. This is
the result you should obtain for the first axis:
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05
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10

0.
15

Loading plot

Variables

Lo
ad

in
gs

X6.aX6.g X90.aX90.gX157.aX157.gX243.cX243.tX267.aX267.g
X280.cX280.t

X334.aX334.gX345.tX376.aX376.gX384.gX384.t

X396.aX396.gX399.cX399.t

X412.gX418.aX418.g
X424.aX424.gX430.aX430.g

X435.aX435.c

X468.a

X468.t

X476.aX476.t

X529.cX529.tX546.cX546.t
X555.aX555.g

X557.gX557.tX564.cX564.tX566.aX566.g
X577.aX577.tX578.tX582.aX582.gX594.aX594.t

X595.cX595.t

X602.aX602.gX627.cX627.t

X647.aX647.g

X664.a

X676.aX676.g
X685.aX685.c

X717.aX717.gX763.aX763.cX806.aX806.gX882.cX882.t

X906.cX906.t

X933.aX933.gX936.aX936.cX939.cX939.t

How can you interprete this result? Note that loadingplot returns invisi-
bly some information about the most contributing alleles (thoses indicated
on the plot). Save this information, and then examine it. Interprete the
following commands and their result:

> which(H3N2$loc.names == "435")

L051
51

> snp435 <- truenames(H3N2[loc = "L051"])
> head(snp435)

435.a 435.c 435.g
AB434107 1 0 0
AB434108 1 0 0
AB438242 1 0 0
AB438243 1 0 0
AB438244 1 0 0
AB438245 1 0 0

> temp <- apply(snp435, 2, function(e) tapply(e, f, mean, na.rm = TRUE))
> temp

15



435.a 435.c 435.g
2001 1.000000000 0.000000000 0.000000000
2002 0.995535714 0.004464286 0.000000000
2003 0.942396313 0.055299539 0.002304147
2004 0.046210721 0.953789279 0.000000000
2005 0.008316008 0.991683992 0.000000000
2006 0.000000000 1.000000000 0.000000000

> matplot(temp, type = "b", pch = c("a", "c", "g"), xlab = "year",
+ ylab = "allele frequency", xaxt = "n", cex = 1.5)
> axis(side = 1, at = 1:6, lab = 2001:2006)
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Do the same for the second axis. How would you interprete this result?
Should we expect a vaccine from 2005 influenza to have worked against the
2006 virus?
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