Practical course using the @ software

Spatial genetics analyses using @

Thibaut Jombart

Abstract

This practical course illustrates some methodological aspects of spa-
tial genetics. In the following we shall test and describe spatial genetic
structures, and compare the results obtained by different methods. A non-
exhaustive list of packages used includes: adegenet [8], ades4 [4, 6, 5], spdep,
adehabitat 2, 1], and vegan [10].
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The chamois (Rupicapra rupicapra) is a conserved species in France. The
Bauges mountains is a protected area in which the species has been recently
studied. One of the most important questions for conservation purposes
relates to whether individuals from this area form a single reproductive
unit, or whether they are structured into sub-groups, and if so, what causes
are likely to induce this structuring.

While field observations are very scarce and do not allow to answer this
question, genetic data can be used to tackle the issue, as departure from
panmixia should result in genetic structuring. The dataset rupica contains
335 georeferenced genotypes of Chamois from the Bauges mountains for 9
microsatellite markers, which we propose to analyse in this exercise.

1 An overview of the data

We first load the data:

> data(rupica)
> rupica

HEHH
### Genind object ###
HHHHHH

- genotypes of individuals -

S4 class: genind
@call: NULL

Otab: 335 x 55 matrix of genotypes

@ind.names: vector of 335 individual names

@loc.names: vector of 9 locus names

@loc.nall: number of alleles per locus

@loc.fac: locus factor for the 55 columns of @tab

@all.names: list of 9 components yielding allele names for each locus
Oploidy: 2

Otype: codom

Optionnal contents:

@pop: - empty -
Opop.names: - empty -

Q@other: a list containing: xy mnt showBauges

rupica is a typical genind object, which is the class of objects storing
genotypes (as opposed to population data) in adegenet. rupica also contains
topographic information about the sampled area, which can be displayed by
calling rupica$other$showBauges. For instance, the spatial distribution of
the sampling can be displayed as follows:

> rupica$other$showBauges ()
> points(rupica$other$xy, col = "red", pch = 20)
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This spatial distribution is clearly not random, but seems arranged into
loose clusters. However, superimposed samples can bias our visual assess-
ment of the spatial clustering. Use a two-dimensional kernel density estima-
tion (function s.kde2d) to overcome this possible issue.

Is geographical clustering strong enough to assign safely each individual
to a group? Accordingly, shall we analyse these data at individual or group
level?

2 Summarising the genetic diversity

As a prior clustering of genotypes is not known, we cannot employ usual Fgp-
based approaches to detect genetic structuring. However, genetic structure
could still result in a deficit of heterozygosity. Use the summary of genind
objects to compare expected and observed heterozygosity:
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Observed vs expected heterozygosity

rupica.smry$Hobs
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The red line indicate identity between both quantities. What can we say
about heterozygosity in this population? How can this be tested? The result
below can be reproduced using a standard testing procedure:

Paired t-test
data: rupica.smry$Hexp and rupica.smry$Hobs
t = 0.9461, df = 8, p-value = 0.3718
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.01025068 0.02451318
sample estimates:

mean of the differences
0.00713125

We can seek a global picture of the genetic diversity among genotypes
using a Principal Component Analysis (PCA, [11, 7], dudi.pca in ade4 pack-
age). The analysis is performed on a table of standardised alleles frequencies,
obtained by scaleGen (use the binomial scaling option). Remember to dis-
able the scaling option when performing the PCA. The function dudi.pca
displays a barplot of eigenvalues and asks for a number of retained principal
components:
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The output produced by dudi.pca is a dudi object. A dudi object contains
various information; in the case of PCA, principal axes (loadings), principal
components (synthetic variable), and eigenvalues are respectively stored in
$c1, $11, and $eig slots. Here is the content of the PCA:

Duality diagramm
class: pca dudi
$call: dudi.pca(df = rupica.X, center = FALSE, scale = FALSE, scannf = FALSE,

nf = 2)
$nf: 2 axis-components saved
$rank: 45
eigen values: 1.561 1.34 1.168 1.097 1.071
vector length mode content
1 $cw 55 numeric column weights
2 $lw 335 numeric row weights
3 $eig 45 numeric eigen values

data.frame nrow ncol content

1 $tab 335 55 modified array

2 $1i 335 2 row coordinates

3 $11 335 2 row normed scores

4 $co 55 2 column coordinates

5 $ci 55 2 column normed scores
other elements: cent norm

In general, eigenvalues represent the amount of genetic diversity — as
measured by the multivariate method being used — represented by each
principal component (PC). Verify that here, each eigenvalue is the variance
of the corresponding PC.

An abrupt decrease in eigenvalues is likely to indicate the boundary
between true patterns and non-interpretable structures. In this case, how
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many PCs would you interprete?

Use s.label to display to two first components of the analysis. Then,
use a kernel density (s.kde2d) for a better assessment of the distribution of
the genotypes onto the principal axes:

d=5
7868
7380 b
600
- :
74
7137
Eigenvalues

What can we say about the genetic diversity among these genotypes as
inferred by PCA? The function loadingplot allows to visualize the contri-
bution of each allele, expressed as squared loadings, for a given principal
component. Using this function, reproduce this figure:
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What do we observe? We can get back to the genotypes for the concerned
markers (e.g., Bm203) to check whether the highlighted genotypes are un-
common. truenames extracts the table of allele frequencies from a genind
object (restoring original labels for markers, alleles, and individuals):

> X <- truenames(rupica)
> class(X)

[1] "matrix"
> dim(X)
[1] 335 55

> bm203.221 <- X[, "Bm203.221"]
> table(bm203.221)

bm203.221
0 0.00597014925373134 0.5
330 1 4

Only 4 genotypes possess one copy of the allele 221 of marker bm203 (the
second result corresponds to a replaced missing data). Which individuals
are they?




Imperial College
London

001 019 029 276
Il8l| lI86|I Il600ll l|7385ll

Conclusion?

3 Mapping and testing PCA results

A frequent practice in spatial genetics is mapping the first principal compo-
nents (PCs) onto the geographic space. The function s.value is well-suited
to do so, using black and white squares of variable size for positive and
negative values. To give a legend for this type of representation:

> s.value(cbind(1:11, rep(1l, 11)), -5:5, cleg = 0)
> text(1:11, rep(1l, 11), -5:5, col = "red", cex = 1.5)

SlaEEa o n a BHEE

Apply this graphical representation to the first two PCs of the PCA:
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[é FPCA - first PC
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[é BCA; second PC
WA

What can we say about spatial genetic structure as inferred by PCA? This
visual assessment can be complemented by testing the spatial autocorrela-
tion in the first PCs of PCA. This can be achieved using Moran’s I test. Use
the function moran.mc in the package spdep to perform these tests. You will
need first to define the spatial connectivity between the sampled individuals.
For these data, spatial connectivity is best defined as the overlap between
home ranges of individuals. Home ranges will be modelled as disks with a
radius of 1150m. Use chooseCN to create a connection network based on
distance range (“neighbourhood by distance”). What threshold distance do
you choose for individuals to be considered as neighbours? The connection
network should ressemble this:

Characteristics of weights list object:
Neighbour list object:

Number of regions: 335

Number of nonzero links: 18018
Percentage nonzero weights: 16.05525
Average number of links: 53.78507

Weights style: W
Weights constants summary:

n nn SO S1 52
W 335 112225 335 15.04311 1352.07

11
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rupica.graph

Perform Moran’s test for the first two PCs, and plot the results. The
first test should be significant:

Density plot of permutation outcomes
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Compare this result to the mapping of the first PC of PCA. What is wrong?
When a test gives unexpected results, it is worth looking into the data in

12
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more details. Moran’s plot (moran.plot) plots the tested variable against
its lagged vector. Use it on the first PC:
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Actual positive autocorrelation corresponds to a positive correlation between
a variable and its lag vector. Is it the case here? How can we explain that
Moran’s test was significant?

Repeat these analyses for the second PC. What are your conclusions?
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Density plot of permutation outcomes
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4 Multivariate tests of spatial structure

So far, we have only tested the existence of spatial structures in the first
two principal components of a PCA of the data. Therefore, these tests only
describe one fragment of the data, and do not encompass the whole diversity
in the data. As a complement, we can use Mantel test (mantel.randtest)
to test spatial structures in the whole data, by assessing the correlation
between genetic distances and geographic distances. Pairwise Fuclidean
distances are computed using dist. Perform Mantel test, using the scaled
genetic data you used before in PCA, and the geographic coordinates.

14
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Histogram of sim
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What is your conclusion? Shall we be looking for spatial structures? If
so, how can we explain that PCA did not reveal them? Does the Mantel
correlogram (mantel.correlog in wvegan package) bring any help solving
the problem?

5 spatial Principal Component Analysis

The spatial Principal Component Analysis (sPCA, function spca [9]) has
been especially developed to investigate hidden or non-obvious spatial ge-
netic patterns. Like Moran’s I test, sSPCA first requires the spatial prox-
imities between genotypes to be modeled. You will reuse the connection
network defined previously using chooseCN, and pass it as the ’cn’ argu-
ment of the function spca.

Read the documentation of spca, and apply the function to the dataset
rupica. The function will display a barplot of eigenvalues:

15
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This figure illustrates the fundamental difference between PCA and sPCA.
Like dudi.pca, spca displays a barplot of eigenvalues, but unlike in PCA,
eigenvalues of SPCA can also be negative. This is because the criterion opti-
mized by the analysis can have positive and negative values, corresponding
respectively to positive and negative autocorrelation. Positive spatial auto-
correlation correspond to greater genetic similarity between geographically
closer individuals. Conversely, negative spatial autocorrelation corresponds
to greater dissimilarity between neighbours. The spatial autocorrelation of
a variable is measured by Moran’s I, and interpreted as follows:

* Iy = —1/(n—1): no spatial autocorrelation (z is randomly distributed
across space)

* I > Iy: positive spatial autocorrelation
* I < Iy: negative spatial autocorrelation

Principal components of PCA ensure that (¢ referring to one PC) var(¢)
is maximum. By contrast, sPCA provides PC which decompose the quantity
var(¢)I(¢). In other words, PCA focuses on variability only, while sPCA is
a compromise between variability (var(¢)) and spatial structure (I(¢)).

In this case, only the principal components associated with the two first
positive eigenvalues (in red) shall be retained. The printing of spca objects
is more explicit than dudi objects, but named with the same conventions:

B

# spatial Principal Component Analysis #

R
class: spca

16
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$call: spca(obj = rupica, cn = rupica.graph, scannf = FALSE, nfposi = 2,
nfnega = 0)

$nfposi: 2 axis-components saved

$nfnega: O axis-components saved

Positive eigenvalues: 0.03018 0.01408 0.009211 0.006835 0.004529 ...
Negative eigenvalues: -0.008611 -0.006414 -0.004451 -0.003963 -0.003329 ...

vector length mode content
1 $eig 45 numeric eigenvalues
data.frame nrow ncol content
1 $ct 55 2 principal axes: scaled vectors of alleles loadings
2 $1i 335 2 principal components: coordinates of entities ('scores')
3 $1s 3356 2 lag vector of principal components
4 $as 2 2 pca axes onto spca axes

$xy: matrix of spatial coordinates
$1w: a list of spatial weights (class 'listw')

other elements: NULL

Unlike usual multivariate analyses, eigenvalues of sSPCA are composite:
they measure both the genetic diversity (variance) and the spatial struc-
ture (spatial autocorrelation measured by Moran’s I'). This decomposition
can also be used to choose which principal component to interprete. The
function screeplot allows to display this information graphically:

Spatial and variance components of the eigenvalues
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While \; indicates with no doubt a structure, the second eigenvalue, Ao is
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less clearly distinct from the successive values. Thus, we shall keep in mind
this uncertainty when interpreting the second principal component of the
analysis.

Try visualising the sSPCA results as you did before with the PCA results.
To clarify the possible spatial patterns, you can map the lagged PC ($ls)
instead of the PC ($li), which are a ’denoisified” version of the PCs.

First, map the first principal component of sSPCA. How would you in-
terprete this result? How does it compare to the first PC of PCA? What
inferrence can we make about the way the landscape influences gene flow in
this population of Chamois?

Do the same with the second PC of sSPCA. Some field observations sug-
gest that this pattern is not artefactual. How would you interprete this
second structure?

To finish, you can try representing both structures at the same time
using the color coding introduced by [3] (?colorplot). The final figure
should ressemble this (although colors may change from one computer to
another):

ésPCA - colorplot of PC1 and 2
{

g -,‘1 ('I.qlgged scores)
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