Practical course using the @ software

Analysing outbreak data using @:
some exploratory approaches

Thibaut Jombart (tjombart@imperial.ac.uk)
Imperial College London — RAPID-NGS Workshop

Abstract

This practical introduces some simple analyses of pathogen genome data col-
lected during disease outbreaks, using the @ software [4]. We illustrate how dif-
ferent approaches including phylogenetics, genetic clustering and SeqTrack [2] can
be used to uncover the features of a disease outbreak, and possibly help design-
ing containment strategies. This tutorial uses the packages ape [3] for phylogenetic
analyses and adegenet [1] for genetic clustering and transmission tree reconstruction
(SeqTrack algorithm). While the data and analysed outbreak are purely fictional,
the methodology presented here will be useful for the first exploration of a range of
actual disease outbreaks.
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1 Introduction

1.1 An emerging pathogen outbreak

A new virus has just emerged in the small city of Arkham, Massachusetts (USA),
causing an outbreak of a very peculiar and unique disease. The most common
symptoms include dementia and possible fever, resulting in frequently attempted
cannibalism and subsequent isolation of the patients (Figure 1).

Figure 1: Example of a “mild” case.

Unfortunately, in a smaller number of more concerning cases the patients were
seen to grow fangs, claws, and various numbers of tentacles and pseudopods, and
were subsequently shot by the police forces (Figure 2). Authorities refer to the two
types of cases as “mild” and “severe”, respectively.

Figure 2: Example of a “severe” case.

1.2 Your objective

An expert in the analysis of disease outbreaks, you have been mandated for the
analysis of the first collected data. So far, the mode of transmission of the disease
is not obvious, but the pathogen has been identified as a virus, and its genome
sequenced. Your task is to exploit this information to cast some light on who

infected whom.
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2 First look at the data

We first load two R packages used for the analysis of the data, ape (for phylogenetics)
and adegenet (for genetic clustering and SeqTrack).

> library(ape)

> library(adegenet)

The data consists of two files: one file cases.csv containing description of the
first 30 cases sampled so far, and a DNA alignment in fasta format (alignment.fa)
containing one viral genome sequence for each case. We read these data directly
from the server where they are available, starting with case description:

> cases <- read.csv("http://adegenet.r-forge.r-project.org/files/fakeOutbreak/cases.csv")

> cases
id collec.dates sex age peak.fever outcome notes

1 1 2013-02-18 m 30 37.5 mild
2 2 2013-02-20 £ 40 38.5 mild
3 3 2013-02-21 £ 32 38.0 mild
4 4 2013-02-21 m 35 38.5 mild
5 5 2013-02-22 f 3 39.5 mild
6 6 2013-02-24 f 34 39.0 mild
7 7 2013-02-23 m 61 40.0 severe
8 8 2013-02-24 f 68 39.5 severe
9 9 2013-02-24 m 35 39.5 mild
10 10 2013-02-24 f 34 39.5 mild
11 11 2013-02-26 m 26 39.0 mild
12 12 2013-02-25 £ 69 37.5 severe
13 13 2013-02-25 m 19 40.5 mild
14 14  2013-02-25 f 66 37.5 mild
15 15  2013-02-25 £ 3 37.0 mild
16 16  2013-02-26 m 19 37.0 mild
17 17 2013-02-26 m 35 38.5 mild
18 18 2013-02-27 m 37 37.0 mild
19 19  2013-02-26 m 11 37.5 mild
20 20 2013-02-28 m 35 37.5 mild
21 21 2013-02-27 m 49 37.0 mild
22 22 2013-02-28 m 35 37.0 mild
23 23 2013-02-26 m 34 37.0 mild
24 24 2013-02-27 m 59 37.5 severe
25 26 2013-02-26 £ 47 37.0 mild
26 26 2013-02-26 f 34 37.0 mild
27 21 2013-02-28 f 26 37.5 mild
28 28 2013-02-27 £ 16 37.0 mild possible-contamination
29 29 2013-03-01 f 15 41.0 mild
30 30 2013-03-01 m 40 37.0 mild

The data contain the following fields: id is the identifier of the cases, collec.dates
are collection dates (in format yyyy-mm-dd), the gender (sex) and age (age) of the
patients, the highest temperature of the case (peak.fever), and the outcome of the
case (outcome). The additional field notes has been used for notes on the samples,
and indicates that sample 28 might have experienced DNA contamination (possible
mixture of different samples).

As operations on the collection dates will be useful, we convert the dates into
Date objects; we also create a new object days, which gives collection times in
number of days after the first sample (which has been sampled, by definition, on
day 0):

> dates <- as.Date(cases$collec.dates)
> head(dates)

[1] "2013-02-18" "2013-02-20" "2013-02-21" "2013-02-21" "2013-02-22"
[6] "2013-02-24"

> range(dates)

[1] "2013-02-18" "2013-03-01"
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> days <- as.integer(difftime(dates, min(dates), unit="days"))
> days

[1] 0 2 3 3 4 6 5 6 6 6 8 7 7 7 7 8 8 9 810 910 8 9 8
[26] 8 10 9 11 11

DNA sequences for the 30 cases are read from the server using read.dna, pre-
cising that the data are in fasta format (format="fasta"):

> dna <- read.dna("http://adegenet.r-forge.r-project.org/files/fakeQutbreak/alignment.fa",
+ format="fasta")
> dna

30 DNA sequences in binary format stored in a matrix.
A1l sequences of same length: 10000
Labels: 1 23 456 ...
Base composition:
a C g t
0.251 0.242 0.251 0.256
To have an idea of the existing diversity in these sequences, we compute the

simple pair-wise Hamming distances and plot their distribution:
> D <- dist.dna(dna, model="N")
> hist(D, col="royalblue", nclass=30,

+ main="Distribution of pairwise genetic distances",
+ xlab="Number of differing nucleotides")

Distribution of pairwise genetic distances
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For such a small temporal scale and genome, the amount of diversity is considerable.
The fact that the distribution is clearly bimodal suggests the existence of at least
two clades (and possibly more).

It may be interesting to see if this remarkable polymorphism is distributed ran-
domly across the genome. We can extract SNPs very simply from the DNA se-
quences using seg.sites:

> snps <- seg.sites(dna)
> head(snps)

[1] 142 161 226 236 313 331
> length(snps)

(11 79

There are 79 polymorphic sites in the sample. We can visualize their position, and
try to detect hotspots of polymorphism by computing the density of SNPs as we
move along the genome:

plot(density(snps, bw=100), col="royalblue",
xlab="Nucleotide position", ylab="SNP density",
main="Location of the SNPs in the genome", lwd=2)
points(snps, rep(0, length(snps)), pch="|", col="red")
mtext (side=3, text="blue: density of SNPs red bars: actual SNP positions")
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Location of the SNPs in the genome
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Nucleotide position

Here, the polymorphism seems to be distributed fairly randomly.
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3 Phylogenetic analysis

The genetic relationships between a set of taxa are often best inferred using phylo-
genetic trees. Here, we reconstruct a phylogenetic trees using the usual Neighbour-
Joining algorithm on pairwise genetic distances. As the mere numbers of differing
nucleotides may be too crude a measure of genetic differentiation, we use Tamura
and Nei’s distance, which handles different rates for transitions and transversions
(see 7dist.dna for other available distances):

> D.tn93 <- dist.dna(dna, model="TN93")

The package ape makes the construction of phylogenies from distances matrices
easy; in the following, we create a Neighbour-Joining tree (nj) based on our new
distance matrix (D.tn93), we root this tree to the first sample (root), and ladderize
it to make it prettier (ladderize):

> tre <- nj(D.tn93)
> tre

Phylogenetic tree with 30 tips and 28 internal nodes.

Tip labels:
1’ 2, 3, 4’ 5’ 6,

Unrooted; includes branch lengths.

> tre <- root(tre,1)
> tre <- ladderize(tre)

We also rename the tips of the tree (tre$tip.label) to include the collection dates
after the case indices:
> tre$tip.label <- paste("Case ",1:30, " / day ", days, sep="")

Finally, we plot the resulting tree, using colors to represent collection dates (blue:
ancient; red: recent):
> plot(tre,edge.width=2, tip.col=num2col(days, col.pal=seasun))

> title("Neighbour-Joining tree (TN93 distances)")
> mtext(side=3, text="(rooted to first case)")
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Neighbour—Joining tree (TN93 distances)

(rooted to first case)

Casel/dy
ase /ay
ase 3/day 3

ase 18 /day 9

Case 28/ day 9
Case 4 / day 3

—Case 16 / day 8

ase 17/ day 8
ase 27 / day 10
ase 26 / day 8

ase 22/ day’10
ase 21 /day 9

ase 11/day’8
Case 29/ day 11

ase 20/ day 10

The tree clearly shows at least two distinct clades, possibly three. This could
be due to discontinuous sampling, but the dates/colors clearly show that this is not
the case: case 4 was sampled on day 3, and is genetically very distinct from e.g.
cases 1-3.

4 Identifying clusters of cases

Identifying clusters of cases from a phylogeny is not always straightforward. Ade-
genet implements a simple clustering approach based on the number of mutations
separating sequences, classifying them in the same cluster if their distance is less
than a given threshold. This function is called gengraph, and can be used with an
interactive mode (by default), using:

> clust <- gengraph(D)

(legend: sequences are the nodes of the graphs; edges link sequences from the same
cluster; numbers on the edges indicate numbers of mutations)

Try a few values; you should see that 3 groups are obtained for anything between
15 and 25 mutations, with the result looking like this:
> clust
$graph

IGRAPH UNW- 30 217 --
+ attr: name (v/c), color (v/c), label (v/c), weight (e/n), label (e/n)

$clust
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$clust$membership
[11111212212221211221222222222322

$clustPcsize
[1] 920 1

$clust$no
[1]1 3
$cutoff
[1] 20
$col

1 2 3
"#O0OOOFF" "#FFA500" "#AO20F0"

> plot(clust$g, main="Clusters obtained by gengraph")

Clusters obtained by gengraph

This confirms what the phylogeny suggested: there are two distinct clades, and one
outlier (case 28), which is very likely an indication that this sample was indeed
contaminated — as a reminder:

> cases[28,]

id collec.dates sex age peak.fever outcome notes
28 28 2013-02-27 f 16 37 mild possible-contamination

We can verify the congruence of the groups and the phylogeny easily:

> plot(tre, tip.color=clust$col[clust$clust$membership])

> title("Neighbour-Joining tree (TN93 distances)")

> mtext(side=3, text="(rooted to first case)")

> legend("bottomleft", fill=clust$col, legend=paste("group",1:3), title="Cluster of cases")
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Neighbour—Joining tree (TN93 distances)

(rooted to first case)

Case 28/ day 9

.

Cluster of cases
B group 1l
O group 2
B group 3

5 Analysis using SeqTrack

5.1

The phylogenetic tree gives us an idea of the possible chains of transmissions, but
overlooks the collection dates. The SeqTrack algorithm has been designed to fill this
gap. It aims to reconstruct ancestries between the sampled sequences based on their
genetic distances and collection dates, so that the obtained tree has maximum par-
simony. It is implemented in adegenet by the function seqTrack (see ?seqTrack).
Here, we use SeqTrack on the matrix of pairwise distances (distmat), indicating the
labels of the cases (x.names=cases$id) and the collection dates (x.dates=dates):

Transmission tree reconstruction using SeqTrack

> distmat <- as.matrix(D)
> res <- seqTrack(distmat, x.names=cases$id, x.dates=dates)
> class(res)

[1] "seqTrack"  "data.frame"
> res

id ances weight date ances.date
1 1 NA NA 2013-02-18 <NA>
2 2 1 1 2013-02-20 2013-02-18
3 3 2 1 2013-02-21 2013-02-20
4 4 1 26 2013-02-21 2013-02-18
5 b 3 1 2013-02-22 2013-02-21
6 6 4 4 2013-02-24 2013-02-21
T 7 4 0 2013-02-23 2013-02-21

10
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8 8 5 0 2013-02-24 2013-02-22
9 9 4 7 2013-02-24 2013-02-21
10 10 4 5 2013-02-24 2013-02-21
11 11 4 2 2013-02-26 2013-02-21
12 12 5 0 2013-02-25 2013-02-22
13 13 9 1 2013-02-25 2013-02-24
14 14 5 1 2013-02-25 2013-02-22
15 15 5 2 2013-02-25 2013-02-22
16 16 4 2 2013-02-26 2013-02-21
17 17 4 2 2013-02-26 2013-02-21
18 18 5 0 2013-02-27 2013-02-22
19 19 9 1 2013-02-26 2013-02-24
20 20 10 3 2013-02-28 2013-02-24
21 21 11 1 2013-02-27 2013-02-26
22 22 11 0 2013-02-28 2013-02-26
23 23 13 3 2013-02-26 2013-02-25
24 24 13 1 2013-02-27 2013-02-25
25 25 13 2 2013-02-26 2013-02-25
26 26 4 3 2013-02-26 2013-02-21
27 27 17 1 2013-02-28 2013-02-26
28 28 1 28 2013-02-27 2013-02-18
29 29 10 0 2013-03-01 2013-02-24
30 30 13 2 2013-03-01 2013-02-25

The result res is a

data.frame with the special class seqTrack, containing the

following information:

*

*

*

*

*

res$id: the indices of the cases.

res$ances: the indices of the putative ancestors of the cases.
res$weight: the number of mutations corresponding to the ancestries.
res$date: the collection dates of the cases.

res$ances.date: the collection dates of the putative ancestors.

seqTrack objects can be plotted simply using:

> g <- plot(res, main="SeqTrack reconstruction of the outbreak")
> mtext(side=3, text="red: no/few mutations; grey: many mutations")

11
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SeqTrack reconstruction of the outbreak

red: no/few mutations; grey: many mutations

> 8

IGRAPH DNW- 30 29 --
+ attr: name (v/c), dates (v/n), weight (e/n), label (e/n), color (e/c)

Each sequence/case is a node of the graph, and arrows model putative ances-
tries/transmissions. The number of mutations between ancestors and descendents
are indicated by the color of the arrows (red = no/few mutations; light grey= many
mutations) and the numbers in blue. Time is represented on the y axis (up: ancient;
down: recent). Note that the function plot here returns a graph object which can
be used for further visualization. In particular, tkplot offers a basic interface for
interactive graphics which you can try using:

> tkplot(g)

One of the basic limitations of SeqTrack is made quite obvious here: all sequences
are forced to coalesce to the initial one, while there are some clearly distinct clusters
indicative of two separate introductions (cases 1 and 4). Sequence 28 cannot be
trusted, so it is pointless to seek its ancestry. We can fix all this manually:

> res$ances[4] <- NA
> res$ances[28] <- NA

> plot(res, main="SeqTrack reconstruction of the outbreak")
> mtext(side=3, text="(manually refined)")

12
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SeqTrack reconstruction of the outbreak

(manually refined)

5.2 Inference from the reconstructed tree

One of the first concerns once we inferred a transmission tree is the identification of
key individuals for the spread of the epidemic. This can be assessed by computing
the number of secondary cases per infected individual, that is, the individual effective
reproduction numbers (R;). We compute these values from the SeqTrack output:

> Rindiv <- sapply(1:30, function(i) sum(res$ances==i, na.rm=TRUE))

> names(Rindiv) <- paste("case",1:30,sep="")

> Rindiv[28] <- NA
> Rindiv

casel case2 case3 cased4 caseb case6 case7 case8 case9 casell casell

1 1 1 8 5 0 0 0 2 2 2
casel2 casel3 caseld caselb casel6 casel7 casel8 casel9 case20 case2l case22

0 4 0 0 0 1 0 0 0 0 0
case23 case24 case2b case26 case27 case28 case29 case30

0 0 0 0 0 NA 0 0

Now that we have this proxy for the “infectiousness” of individuals, we can try to
correlate it to other factors such as age, sex, or other measured covariates. Note that
we only have a snapshot of an ongoing epidemic, so we probably have not measured
the infectiousness of the last infected individuals. Let us first have another look at
the distribution of the collection dates:

> dotchart(days,labels=paste("case", 1:30),
+ xlab="Days since first sample",
+ main="Distribution of the collection dates")

13
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Distribution of the collection dates
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case 2 o

case 1l o

0 00O

o

Days since first sample

There is no obvious way of defining a threshold date, but keeping all cases until day
8 (included) seems to exclude most recent cases while conserving a fair portion of
the sample.

> toKeep <- days<9

We can now examine and test possible relationships between R; (object Rindiv)
and covariates in cases. For a reminder:
> head(cases)

id collec.dates sex age peak.fever outcome notes

1 1 2013-02-18 m 30 37.5 mild
2 2 2013-02-20 £ 40 38.5 mild
3 3 2013-02-21 £ 32 38.0 mild
4 4 2013-02-21 m 35 38.5 mild
5 5 2013-02-22 f 3 39.5 mild
6 6 2013-02-24 £ 34 39.0 mild

Interprete the following graphs and tests:

> boxplot (Rindiv[toKeep] “cases$sex[toKeep], xlab="Patient gender",
+ ylab="Inferred number of secondary cases caused", col=c("gold","royalblue"))
> title("Inferred infectivity vs gender")

14
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Inferred infectivity vs gender
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> t.test(Rindiv[toKeep] “cases$sex[toKeep])

Welch Two Sample t-test

data: Rindiv[toKeep] by cases$sex[toKeep]
t = -1.0619, df = 14.579, p-value = 0.3056
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-2.9575159 0.9938795
sample estimates:
mean in group f mean in group m
0.8181818 1.8000000

> plot(Rindiv[toKeep] “cases$age[toKeep], xlab="Patient age",
+ ylab="Inferred number of secondary cases caused",

+ pch=20, cex=1.5)

> title("Inferred infectivity vs age")

15
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Inferred infectivity vs age
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> cor.test(Rindiv[toKeep],cases$age[toKeep], method="spearman")

Spearman's rank correlation rho

data: Rindiv[toKeep] and cases$age[toKeep]
S = 1960.259, p-value = 0.2314
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
-0.2728957

> plot(Rindiv[toKeep] “jitter(cases$peak.fever[toKeep]), xlab="Peak fever of the cases",
+ ylab="Inferred number of secondary cases caused",

+ pch=20, cex=1.5)

> title("Inferred infectivity vs peak fever")

16
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Inferred infectivity vs peak fever

o — .
©
()
(2]
>
]
(&)
(] —]
(DLO
0
©
(&)
> .
@©
o
c
3 <«

— °

()
n
Y—
o
S
[}
o)
S
>
c AN ° [
°
(&)
P
S
qq;’ ° ° [ ]
£

O — ese [ X ° ° °

I I I I I I I I
3r0 375 380 385 390 395 40.0 405

Peak fever of the cases

> cor.test(Rindiv[toKeep],cases$peak.fever[toKeep], method="spearman")

Spearman's rank correlation rho

data: Rindiv[toKeep] and cases$peak.fever[toKeep]
S = 661.06, p-value = 0.006892
alternative hypothesis: true rho is not equal to O
sample estimates:

rho
0.5707403

> boxplot(Rindiv~cases$outcome, xlab="Case outcome",
+ ylab="Inferred number of secondary cases caused", col=c("gold","royalblue"))
> title("Inferred infectivity vs outcome")

17
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Inferred infectivity vs outcome
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> t.test(Rindiv~cases$outcome)

Welch Two Sample t-test

data: Rindiv by cases$outcome
t = 2.7605, df = 24, p-value = 0.01088
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

0.2725258 1.8874742
sample estimates:

mean in group mild mean in group severe

1.08 0.00

5.3 Update from detailed case investigations

As you were finishing your analyses, you have been updated on the situation by
the authorities. Apparently, detailed investigations have helped casting light on the
transmissions that took place for the first 25 cases. Information on likely infectors
is contained in the following file:

> newinfo <- read.csv("http://adegenet.r-forge.r-project.org/files/fakeOutbreak/update.csv")
> newinfo

infection.dates infectors
2013-02-15 NA
2013-02-17 1
2013-02-19 2
2013-02-19 NA
2013-02-21 3
2013-02-21 4
2013-02-21 4
2013-02-22 5

ONOOPDdWN -
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9 2013-02-22 6
10 2013-02-23 6
11 2013-02-23 7
12 2013-02-23 8
13 2013-02-23 9
14 2013-02-24 5
15 2013-02-24 5
16 2013-02-24 7
17 2013-02-24 7
18 2013-02-25 8
19 2013-02-25 9
20 2013-02-25 10
21 2013-02-25 11
22 2013-02-25 11
23 2013-02-25 13
24 2013-02-25 13
25 2013-02-25 13

It is fairly straightforward to compare SeqTrack’s results to this new data; we just
need to avoid comparing NAs (as NA==NA is NA, not TRUE), so we replace unknown
ancestries (NA) with 0.

> res$ances[is.na(res$ances)] <- 0
> newinfo$infectors[is.na(newinfo$infectors)] <- 0
> comp <- rbind(res$ances[1:25], newinfo$infectors)
> rownames (comp) <- c("SeqTrack","investigations")
> colnames(comp) <- paste("case", 1:25)
> comp
case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9
SeqTrack 0 1 2 0 3 4 4 5 4
investigations 0 1 2 0 3 4 4 5 6
case 10 case 11 case 12 case 13 case 14 case 15 case 16 case 17
SeqTrack 4 4 5 9 5 5 4 4
investigations 6 7 8 9 5 5 7 7
case 18 case 19 case 20 case 21 case 22 case 23 case 24 case 25
SeqTrack 5 9 10 11 11 13 13 13
investigations 8 9 10 11 11 13 13 13

> mean(comp[1,]==comp[2,])

[1] 0.72

Not too bad: SeqTrack and the detailed field investigations agree in 72% of cases.

Let us examine again the possible effect of covariates on individual reproduction
numbers R;, this time computing R; from the investigation data:

> Rindiv2 <- sapply(1:30, function(i) sum(newinfo$infectors==i, na.rm=TRUE))
> names(Rindiv2) <- paste("case",1:30,sep="")
> Rindiv2

casel case2 case3 cased4 caseb caseb6 case7 case8 case9 casell casell

1 1 1 2 3 2 3 2 2 1 2
casel2 casel3 caseld caselb casel6 casel7 casel8 casel9 case20 case2l case22

0 3 0 0 0 0 0 0 0 0 0
case23 case24 case2b case26 case27 case28 case29 case30

0 0 0 0 0 0 0 0

Again, we discard the most recent cases (collection on day 9 and later; this infor-
mation is still in toKeep). What can you conclude from the following graphs and
tests:

> boxplot(Rindiv2[toKeep] “cases$sex[toKeep], xlab="Patient gender",
+ ylab="Inferred number of secondary cases caused", col=c("gold","royalblue"))
> title("Inferred infectivity vs gender")
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Inferred infectivity vs gender
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> t.test(Rindiv2[toKeep] “cases$sex[toKeep])

Welch Two Sample t-test

data: Rindiv2[toKeep] by cases$sex[toKeep]
t = -0.7728, df = 17.639, p-value = 0.4498
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-1.4551288 0.6733106
sample estimates:
mean in group f mean in group m
0.9090909 1.3000000

> plot(Rindiv2[toKeep] "cases$age[toKeep], xlab="Patient age",
+ ylab="Inferred number of secondary cases caused",

+ pch=20, cex=1.5)

> title("Inferred infectivity vs age")
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Inferred infectivity vs age
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> cor.test(Rindiv2[toKeep] ,cases$age[toKeep] , method="spearman")

Spearman's rank correlation rho

data: Rindiv2[toKeep] and cases$age[toKeep]
S = 1639.074, p-value = 0.7817
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
-0.06433355

> plot(Rindiv2[toKeep] "jitter(cases$peak.fever[toKeep]), xlab="Peak fever of the cases",
+ ylab="Inferred number of secondary cases caused",

+ pch=20, cex=1.5)

> title("Inferred infectivity vs peak fever")
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Inferred infectivity vs peak fever
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> cor.test(Rindiv2[toKeep] ,cases$peak.fever[toKeep], method="spearman")

Spearman's rank correlation rho

data: Rindiv2[toKeep] and cases$peak.fever[toKeep]
S = 185.5836, p-value = 1.513e-07
alternative hypothesis: true rho is not equal to O
sample estimates:

rho
0.8794912

> boxplot(Rindiv2~cases$outcome, xlab="Case outcome",
+ ylab="Inferred number of secondary cases caused", col=c("gold","royalblue"))
> title("Inferred infectivity vs outcome")
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Inferred infectivity vs outcome
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> t.test(Rindiv2~cases$outcome)

Welch Two Sample t-test

data: Rindiv2 by cases$outcome
t = -0.7189, df = 3.432, p-value = 0.5181
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-2.859747 1.744363
sample estimates:

mean in group mild mean in group severe

0.6923077 1.2500000

What can you say about the transmissibility of this disease? Should prophylaxis
target specific groups of individuals? Looking back at the data, especially the most
recent cases
> tail(cases, 10)

id collec.dates sex age peak.fever outcome notes
21 21 2013-02-27 m 49 37.0 mild
22 22 2013-02-28 m 35 37.0 mild
23 23 2013-02-26 m 34 37.0 mild
24 24 2013-02-27 m 59 37.5 severe
25 256 2013-02-26 f 47 37.0 mild
26 26 2013-02-26 £ 34 37.0 mild
27 271 2013-02-28 £ 26 37.5 mild
28 28 2013-02-27 £ 16 37.0 mild possible-contamination
29 29 2013-03-01 £ 15 41.0 mild
30 30 2013-03-01 m 40 37.0 mild

Which individual(s) would you recommend isolating in priority?
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